Dojindo,NOC 12/10/N378,NOC 是稳定的 NO-胺复合物

Product Description of NOC Compounds

NOC 是稳定的 NO-胺复合物,可在生理条件下自发释放 NO,无需辅因子。 NO 释放速率取决于 NOC 的化学结构。与其他经典的 NO 供体(如硝酸甘油和 nitropurusside)相比,NOCs 自发生成 NO 的机制非常简单,并且副产物不会干扰细胞活动。一个 NOC 分子释放两个 NO 分子(如反应方案所示);第二个NO分子的释放速度很慢。 NOC 可用于以受控速率将受控数量的纯 NO 添加到实验系统中,且副作用最小。通过改变 NOC 试剂的浓度和选择,可以轻松控制释放的 NO 量。 Dojindo 提供具有不同半衰期的四种不同的 NOC(NOC 5、7、12 和 18)。在碱性溶液(如 NaOH 水溶液)中制备的 NOC 储备溶液相对稳定。然而,NOC 原液应在一天内使用,因为它每天降解约 5%,即使在 -20ºC 下也是如此。在将储备溶液添加到样品溶液后立即开始释放 NO。

Nitric Oxide Release1. 使用 0.1 M NaOH 制备 10 mM NOC 储备溶液。 由于NOC原液不稳定,所以放在冰浴上一天用完。 2. 将适量的 NOC 储备溶液添加到要释放 NO 的样品溶液中。 为保持样品溶液的 pH 值,NOC 储备溶液的体积不应超过样品体积的 1/50。 样品溶液应具有足够的缓冲作用。 加入 NOC 储备溶液后,NO 将立即释放。Table 1 pH Dependency of NO Release at 37oC

1. K. Hayashi, et al., Action of Nitric Oxide as a Antioxidant Against Oxidation of Soybean Phosphatidylcholine Liposomal Membrane. FEBS Lett. 1995;370:37-40. (NOC 12)2. S. Shibuta, et al., Intracerebroventricular Administration of a Nitric Oxide-releasing Compound, NOC-18, Produces Thermal Hyperalgesia in Rats. Neurosci Lett. 1995;187:103-106. (NOC 18)3. S. Shibuta, et al., A new nitric oxide donor, NOC-18, exhibits a nociceptive effect in the rat formalin model. J Neurol Sci. 1996;141:1-5. (NOC 18)4. N. Yamanaka, et al., Nitric Oxide Released from Zwitterionic Polyamine/NO Adducts Inhibits Cu2+-induced Low Density Lipoprotein Oxidation. FEBS Lett. 1996;398:53-56. (NOC 5, NOC 7)5. D. Berendji, et al., Nitric Oxide Mediates Intracytoplasmic and Intranuclear Zinc Release. FEBS Lett. 1997;405:37-41.6. T. Ohnishi, et al., The Effect of Cu2+ on Rat Pulmonary Arterial Rings. Eur J Pharmacol. 1997;319:49-55. (NOC 7)7. Y. Adachi, et al., Renal Effect of a Nitric Oxide Donor, NOC 7, in Anethetized Rabbits. Eur J Pharmacol. 1997;324:223-226. (NOC 7)8. Y. Minamiyama, et al., Effect of Thiol Status on Nitric Oxide Metabolism in the Circulation. Arch Biochem Biophys. 1997;341:186-192. (NOC 7)
How do I prepare a stock solution?

Prepare 10-50 mM NOC solution with 0.1 M NaOH solution. Then add enough NOC solution to the cell culture to obtain a suitable concentration of NOC in cell culture. If the pH of the culture solution changes, use higher concentration of NOC.

What is the solubility of the NOC compounds?

NOC 5: 40 mg per 100 ml 0.1 M NaOH (2.2 M NOC 5)NOC 7: 70 mg per 100 ml 0.1 M NaOH (4.3 M NOC 7)NOC 12: 27 mg per 100 ml 0.1 M NaOH (1.5 M NOC 12)NOC 18: 20 mg per 100 ml 0.1 M NaOH (1.2 M NOC 18)

Is the stock solution stable?

即使储存在 -20oC,储备溶液每天也会失去 5% 的 NOC 活性。 请在使用前准备新鲜溶液,并在实验过程中将溶液置于冰浴中。 六一1。 一氧化氮研究:没有供体

How is the half-life of NOC determined?

用 0.1 M NaOH 制备 20 mM NOC 库存溶液。 在 37oC 下加热 PBS。 在 1.9 ml PBS 中加入 100 ml NOC 溶液。 使用紫外分光光度计,立即开始测量其在 NOC 最大波长处的吸光度。 继续测量,直到没有观察到进一步的光谱变化。

Can I use NOC for in vivo experiments?

Yes. Please review the papers by Shibata and colleagues (1995, 1996).

Is the amount of NO released in vitro the same as in vivo?

如果 pH 值和温度相同,则溶液中释放的 NO 量应相同。 然而,由于硫醇化合物和血红素等其他反应性成分,NO 在体内的活性可能有所不同。

Dojindo,MDB/100/M021,苯二胺 (OPD) 与 α-酮酸反应形成高荧光喹喔啉衍生物

Product Description

苯二胺 (OPD) 与 α-酮酸反应形成高荧光喹喔啉衍生物。 MDB 是邻苯二胺类似物。 由于它的反应性和敏感性,它是α-酮酸的最佳标记试剂。 在 HPLC 分析中,即使每次注射的浓度仅为几飞摩尔,也可以一次分别检测出十多种不同的 α-酮酸,例如 α-酮戊二酸、丙酮酸和对羟基苯丙酮酸。 MDB 的灵敏度几乎是 OPD 的 150 倍。 标记材料的激发和发射波长分别为 367 nm 和 445 nm。

1. M. Nakamura, et al., 1, 2-Diamino-4, 5-methylenedioxybenzene as a Highly Sensitive Fluorogenic Reagent for α-Keto Acids. Chem Pharm Bull. 1987;35:687-692.2. S. Hara, et al., Fluorometric High-Performance Liquid Chromatography of N-Acetyl-and N-Glycolylneuraminic Acids and Its Application to Their Microdetermination in Human and Animal Sera, Glycoproteins, and Glycolipids. Anal Biochem. 1987;164:138-145.3. S. Hara, et al., 1, 2-Diamino-4, 5-methylenedioxybenzene as a Highly Sensitive Fluorogenic Reagent for α-Dicarbonyl Compounds. Anal Chim Acta. 1988;215:267-276.

Dojindo,HiLyte Fluor 555标记试剂盒-NH2/3/LK14

HiLyte Fluor* 555 Labeling Kit-NH2 主要用于制备红色荧光标记的蛋白质,例如用于免疫染色的 IgG,以及用于示踪的细胞蛋白质。 NH2 反应性 HiLyteFluor 555 是该试剂盒的一个组成部分,具有与蛋白质或其他分子上的氨基反应的琥珀酰亚胺基 (NHS)(图 1)。 该试剂盒包含标记所需的所有试剂。 每管 HiLyte Fluor 555 最多可标记 200 μg 的 IgG,每个 IgG 分子可结合约 4 至 6 个 HiLyte Fluor 555 分子。 标记过程很简单——将 NH2 反应性 HiLyte Fluor 555 添加到膜上的 IgG 溶液中,并在 37ºC 下孵育 10 分钟。 多余的 HiLyte Fluor 555 分子可以通过过滤管去除。 HiLyte Fluor 555 标记的 IgG 的激发和发射波长分别为 555 nm 和 570 nm(图 2)。* HiLyte Fluor 是 AnaSpec, Inc. 的商标。

Fig. 1 Fluorescence Spectrum of HiLyte Fluor 555-conjugated IgG

Fig. 2 Fluorescence spectrum of HiLyte Fluor 555-conjugated IgG______excitation spectrum______emission spectrum

Precaution♦ 本试剂盒要标记的蛋白质的分子量应大于 50,000。♦ 标记过程中,IgG 或 HiLyte Fluor 555 结合的 IgG 始终在过滤管的膜上。♦ 如果 IgG 溶液中含有其他蛋白质 分子量大于 10,000(例如 BSA 或明胶)的 IgG 溶液,在使用该试剂盒标记 HiLyte Fluor 555 之前纯化 IgG 溶液。 IgG 溶液可通过 IgG 纯化试剂盒(本试剂盒未包含)进行纯化。♦ 如果 IgG 溶液含有少量不溶性物质,则将溶液离心并使用上清液进行标记。

1. A. Nagao, K. Sato, K.M. Nishida, H. Siomi, M.C. Siomi, “Gender-specific hierarchy in nuage localization of PIWI-interacting RNA factors in Drosophila”, Front Genet., 2011, 2, 55.2. H. Hoshino, G. Shioi, S. Aizawa, “AVE protein expression and visceral endoderm cell behavior during anterior–posterior axis formation in mouse embryos: Asymmetry in OTX2 and DKK1 expression”, Dev. Biol.., 2015, 402, (2), 175.3. T. Kaneko, T. Minohara, S. Shima, K. Yoshida, A. Fukuda, N. Iwamori, T. Inai and H. Iida, “A membrane protein, TMCO5A, has a close relationship with manchette microtubules in rat spermatids during spermiogenesis”, Mol. Reprod. Dev.., 2019, 86, (3), 330.4. Y. Nakashima, T. Mima, M. Yashiro, T. Sonou, M. Ohya, A. Masumoto, S. Yamanaka, D. Koreeda, K. Tatsuta, Y. Hanba, M. Moribata, S. Negi, T. Shigematsu, “Expression and localization of fibroblast growth factor (FGF) 23 and Klotho in the spleen: its physiological and functional implications”, Growth Factors ., 2016, 34, (5-6), 196.5. Z. Zhang, K. Kakutani, K. Maeno, T. Takada, T. Yurube, M. Doita, M. Kurosaka and K. Nishida, “Expression of silent mating type information regulator 2 homolog 1 and its role in human intervertebral disc cell homeostasis”, Arthritis Res. Ther.., 2011, 13, (6), R200.

Can I use this kit for other proteins?

是的,如果分子量大于 50,000。

在标记蛋白质之前是否必须使用过滤管?
如果蛋白质溶液不含带氨基的小分子,蛋白质浓度为10 mg/ml,或约70 μM,则无需使用过滤管。 将 10 μl 样品溶液与 90 μl 反应缓冲液混合,然后加入 8 μl NH2 反应性 HiLyte Fluor 555(在步骤 3 中制备)至

How long is the HiLyte Fluor 555-labeled protein stable?

如果储存在 4oC,它可以稳定超过 2 个月。 如需更长的储存时间,请加入 100% 体积的甘油,分装并储存在 -20oC。 但是,请注意稳定性取决于蛋白质本身。

该试剂盒可以标记的最少 IgG 量是多少?
IgG 的最小量为 10 μg。 对于少于 20 μg,按照手册添加 4 μl NH2 反应性 HiLyte Fluor 555,而不是在第 4 步中添加 8 μl。

Can I use this kit to label oligonucleotides or peptides?

不可以。寡核苷酸和肽可能太小而无法保留在过滤管的膜过滤器上。

Dojindo,Allophycocyanin Labeling Kit-NH2/3/LK21,别藻蓝蛋白标记试剂盒

藻胆蛋白是源自蓝细菌和真核藻类的荧光蛋白。 它们的荧光远高于荧光素和罗丹明等化学荧光探针。 别藻蓝蛋白 (APC) 是一种藻胆蛋白,在 660 nm 附近有红色荧光(图 1)。 由于这种高荧光,藻胆蛋白标记的抗体和其他分子可以在流式细胞术和免疫染色中提供更高的灵敏度。 别藻蓝蛋白标记试剂盒-NH2 用于简单快速地制备 APC 标记的 IgG(图 2)。 NH2-reactive APC(本试剂盒的一个组成部分)具有活化的酯基,无需任何活化过程即可轻松与目标分子的氨基形成共价键。 该试剂盒中的过滤管用于缓冲液交换和样品 IgG 溶液的浓缩。 该试剂盒包含 APC 标记所需的所有试剂,包括偶联物的储存缓冲液。
 Fluorescence spectrum of APCExcitation wavelength: 650 nmEmission wavelength: 660 nm
IgG labeling reaction of NH2-reactive APC

Precaution♦ The molecular weight of the protein to be labeled with this kit should be greater than 50,000.♦ IgG or allophycocyanin-conjugated IgG is always on the membrane of the filtration tube during the labeling process.♦ If the IgG solution contains other proteins with molecular weight greater than 10,000, such as BSA or gelatin, purify the IgG solution before labeling allophycocyanin with this kit. IgG solution can be purified by IgG Purification Kits (not included in this kit).♦ If the IgG solution contains small insoluble materials, centrifuge the solution and use the supernatant for the labeling.

1. H. Shinohara, T. Yasuda, Y. Aiba, H. Sanjo, M. Hamadate, H. Watarai, H. Sakurai and T. Kurosaki, “PKCβ Regulates BCR-mediated IKK Activatioin by Facilitating the Interaction between TAK1 and CARMA1”, J. Exp. Med., 2005, 202(10), 1423.2. E. Grace Suto, Y. Mabuchi, N. Suzuki, K. Suzuki, Y. Ogata, M. Taguchi, T. Muneta, I. Sekiya and C. Akazawa, “Prospectively isolated mesenchymal stem/stromal cells are enriched in the CD73+ population and exhibit efficacy after transplantation”, Sci. Rep.., 2017,(7), 4838.3. H. Fujii, Y. Ikeuchi, Y. Kurata, N. Ikeda, U. Bahrudin, P. Li, Y. Nakayama, R. Endo, A. Hasegawa, K. Morikawa, J. Miake, A. Yoshida, K. Hidaka, T. Morisaki, H. Ninomiya, Y. Shirayoshi, K. Yamamoto, I. Hisatome, “Electrophysiological properties of prion-positive cardiac progenitors derived from murine embryonic stem cells”, Circ. J.., 2012, 76, (12), 2875.

Can I use this kit for other proteins?
Yes, if the molecular weight is higher than 50,000 and it has a reactiveprimary or secondary amino group. Follow the protocol for IgG labeling with 0.5-1 nmol of sample protein.
How many APC molecules per IgG are introduced?
The average number of APC molecule per IgG is 1 to 2.
Does unconjugated NH2-reactive APC still have an activated ester after the labeling reaction to IgG??
No. It is completely hydrolyzed during the reaction.
Does NH2-reactive APC form an oligomer during the labeling reaction?
No. Since all amino groups of NH2-reactive APC are blocked, no oligomerization is possible.
What is the minimum amount of IgG that can be labeled with LK21-10?
The minimum amount is 50 μg. There is no significant difference in sensitivity and background between 50 μg and 200 μg of IgG.
Do I have to use the WS buffer included with the kit?
Yes. Use the WS buffer to prepare a stock solution of the conjugate. However, you can choose any kind of buffer appropriate to dilute the conjugate stock solution for your experiment.
How long is the conjugate stable?
If you store at 4ºC, it is stable for over 2 months. For longer storage, add 100% volume of glycerol, aliquot and store at -20ºC. However, please note that the stability depends on the protein itself.

Dojindo,ICG-EG8-Sulfo-OSu/1/I290,ICG 是一种荧光团

ICG 是一种荧光团,已在人类临床应用中使用了半个多世纪。 传统的活化 ICG 染料 ICG-Sulfo-OSu 已在体内成像研究中用作抗体偶联物。 然而,由于疏水特性,可见非特异性结合抗体(导致较高的背景)。 作为下一代 ICG 染料,合成了具有短 PEG 接头如 ICG-PEG4-Sulfo-OSu 和 ICG-PEG8-SUlfo-OSu 的 ICG,以增加染料的亲水性。 聚乙二醇化的 ICG 显示出与抗体更高的共价结合,显着降低了非特异性结合。 因此,发现具有短 PEG 接头的 ICG 是更适合体内成像研究的化合物。

Structural Formula


Advantage of PEGylated ICGPEGylated ICG is more suitable for in vivo imaging due to low background.

PEGylated ICG Derivatives (ICG-EGn-Sulfo-OSu)

Non-PEGylated ICG (ICG-Sulfo-Osu)

<Conjugation Ability>


<In vivo Background>


<Performance of PEGylated ICG>

<ICG-EG4, EG8 Sulfo-OSu>1.Sano, K.; Nakajima, T.; Miyazaki, K.; Ohuchi, Y.; Ikegami, T.; Choyke, L. P.; Kobayashi, H.; Bioconjugate Chem., 24, 811-816, (2013).<ICG-Sulfo-OSu>1. Ogawa, M.; Kosaka, N.; Choyke, L. P.; Kobayashi, H.; Cancer Res., 69, 1268 – 1272 (2009).2. Kosaka, N.; Ogawa, M.; Sato, N., Choyke, L.; P.; Kobayashi, H.; J Invest Dermatol, 129, 2818 E822 (2009).3. Kosaka N.; Ogawa, M.; Choyke, P. L.; Kobayashi H.; Future Oncol., 5, 1501-11 (2009).4. Nakajima T,; Mitsunaga M,; Bander NH,; Heston WD,; Choyke PL,; Kobayashi H.; Bioconjug Chem., 22,1700-1705 (2011).5. Ogawa, M.; Regino, C. A.; Seidel, J.; Green, M. V.; Xi, W.; Williams, M.; Kosaka, N.; Choyke, P. L.; Kobayashi, H.; Bioconjug Chem., 20, 2177-84 (2009).

Dojindo,诺尔3/10/N390,NORs 是理想的 NO 供体

Product Description of NOR Compounds

NORs 是理想的 NO 供体,其化学结构与其他 NO 供体完全不同。尽管 NOR 没有任何 ONO2 或 ONO 部分,但它们会以稳定的速率自发释放 NO。尽管 NOR 的 NO 释放机制尚未完全确定,但已证实其副产物不具有任何显着的生物活性。据报道,从 Streptomyces genseosporeus 中分离出的 NOR 3 对大鼠和兔主动脉和狗冠状动脉具有强烈的血管舒张作用。其活性(ED50=1 nM)是硝酸异山梨酯(ISDN)的300倍。 NOR 3 也增加血浆循环 GMP 水平,而 ISDN 没有。 NOR 是血小板聚集和血栓形成的有效抑制剂。 NOR 3 (IC50=0-7 mM) 有效抑制 100% ADP 引发的人血小板聚集,而 ISDN 仅抑制总聚集的 32%,即使在 100 mM 浓度下也是如此。据报道,NOR 3 在缺血/再灌注系统中具有抗心绞痛和心脏保护作用。在大鼠乙酰甲胆碱诱导的冠状血管痉挛模型中,NOR 3 在 1 mg/kg 时剂量依赖性地显着抑制 ST 段的升高。另一方面,ISDN 将其显着抑制为每公斤 3.2 毫克。 NOR试剂的NO释放率的差异甚至反映在体内降血压作用上。 NOR 也可以在 0.5% 甲基纤维素悬浮液中口服使用。 NOR在DMSO溶液中相对稳定。 NOR 1 具有最短的半衰期,是一种很有前途的试剂,可用于制备用于校准的 NO 标准溶液。为了制备标准溶液,将精确稀释的 NOR 1/DMSO 溶液添加到缓冲溶液中。

Nitric Oxide Release1. Prepare 10 mM NOR stock solution using DMSO. Since the NOR stock solution is not stable, keep it on an ice bath and use it in one day.2. Add an appropriate volume of the NOR stock solution to the sample solution in which NO is to be released. In order to avoid possible damage to cells by DMSO, the volume of the NOR stock solution should not exceed 1/50 of the sample volume. The sample solution should have sufficient buffering action. NO will be released immediately after the addition of the NOR stock solution.
1. S. Shibata, et al., Characteristics of the Vasorelaxing Action of (3E)-4-Ethyl-2-hydroxyimino-5-nitro-3-hexamide FK409, a New Vasodilator Isolated from Microbial Sources, in Isolated Rabbit Arteries. J Cardiovasc Pharmacol. 1991;17:508-518.2. Y. Kita, et al., Antianginal Effects of FK409, a New Spontaneous NO Releaser. Br J Pharmacol. 1994;113:1137-1140.3. Y. Kita, et al., Antiplatelet Activities of FK409, a New Spontaneous NO Releaser. Br J Pharmacol. 1994;113:385-388.4. Y. Kita, et al., Spontaneous Nitric Oxide Release Accounts for the Potent Pharmacological Actions of FK409. Eur J Pharmacol. 1994;257:123-130.5. M. Hino, et al., FK409, a Novel Vasodilator Isolated from the Acid-treated Fermentation Broth of Streptomyces Griseosporeus I. Taxonomy, Fermentation, Isolation, and Physico-chemical and Biological Characteristics. J Antibiot. 1989; 42:1578-1583.6. J. Decout, et al., Decomposition of FK409, a New Vasodilator: Identification of Nitric Oxide as Metaborite. Bioorg Med Chem Lett. 1995;5:973-978.7. S. Fukuyama, et al., A New Nitric Oxide (NO) Releaser: Spontaneous NO Release from FK409. Free Radic Res. 1995;23:443-452.8. Y. Kita, et al., FR144420, a Novel, Slow, Nitric Oxide-releasing Agent. Eur J Pharmacol. 1995;275:125-130.9. M. Kato, et al., New Reagents for Controlled Release of Nitric Oxide. Structure-stability Relationships. Bioorg Med Chem Lett. 1996;6:33-38.10. Y. Kita, et al., FK409, a Novel Spontaneous NO Releaser: Comparative Pharmacological Studies with ISDN. Cardiovasc Drug Rev. 1996;14:148-165.11. Y. Hirasawa, et al., Antianginal Effects of FR144420, a Novel Nitric Oxide-releasing Agent. Eur J Pharmacol. 1996;303:55-59.12. M. Sato, et al., Nitric Oxide Raises Cytosolic Concentrations of Ca2+ in Cultured Nodose Ganglion Neurons from Rabbits. Neurosci Lett. 1996;206:69-72.13. Y. Kita, et al., Oral Biological Activities of Spontaneous Nitric Oxide Releaser are Accounted for by their Nitric Oxide-releaseing Rates and Oral Absorption Manners. J Pharmacol Exp Ther. 1996;276:421-425.14. S. Fukuyama, et al., Structure-activity Relationships of Spontaneous Nitric Oxide Releasers, FK409 and its Derivatives. J Pharmacol Exp Ther. 1997;282:236-242.15. Y. Kita, et al., Comparison of Hemodynamic Effects of Nitric Oxide (NO) Donors with Different NO-releasing Properties in Rats. J Cardiovasc Pharmacol. 1997;30:223-228.16. Y. Hirasawa, et al., Comparison of Antiplatelet Effect of two Nitric Oxide-donating Agents, FR146801 and FK409. Thromb Haemost. 1998;79:620-624.
How do I prepare a stock solution?

Prepare 10-50 mM NOR solution with DMSO. The DMSO should be dried. Then add enough NOR solution to the cell culture to obtain a suitable concentration of NOR.

What is the solubility of NOR compounds?

NOR 1: 100 mg per 100 ml DMSO (4.3 M)NOR 3: 137 mg per 100 ml DMSO (6.4 M)NOR 4: 30 mg per 100 ml DMSO (1.0 M)NOR 5: 30 mg per 100 ml DMSO (0.9 M)

Is oral administration possible?

Yes. Please review the article by Kita and colleagues (Eur. J. Pharmacol., 257, 123-130, 1994).

How many NO molecules does each NOR molecule release in physiological conditions? What are the byproducts?

On average, each NOR molecule releases from 1 to 1.5 NO molecules in physiological conditions. Unfortunately, the structure of NOR byproducts remains unclear. However, the NOR byproducts have no cytotoxicity at the normal concentration for NO release experiments.

细胞活力和细胞毒性测定用于药物筛选和化学物质的细胞毒性测试。Dojindo开发了高度水溶性的四唑盐,称为WST。WST-8是高度稳定的WST,用于Cell Counting Kit-8(CCK-8)。由于WST-8甲maz是水溶性的,因此不会形成晶体。因此,不需要诸如MTT测定的增溶过程。此外,CCK-8的检测灵敏度高于其他四唑盐,例如MTT,XTT,MTS或WST-1。

 

Dojindo,SIN-1/25/S264,SIN-1 是血管扩张剂 molsidomine 的代谢物

SIN-1 是血管扩张剂 molsidomine 的代谢物,用于分别评估 NO 和过氧亚硝酸盐与其他 NO 供体的有效性。 SIN-1 在分子氧存在下自发分解生成 NO 和超氧化物。 两种产物都非常迅速地结合形成过氧亚硝酸盐(速率常数 k:3.7×10-7 M-1s-1)。 因此,SIN-1 是一种有用的化合物,可以有效地生成过氧亚硝酸盐。 过氧亚硝酸盐是一种非常强的氧化剂,在生理条件下会产生羟基和亚硝基二氧基自由基。 过氧亚硝酸盐也在酸性条件下快速分解生成硝酸根离子,在碱性条件下缓慢分解生成硝酸根离子。 这些物种具有与 NO 不同的生物活性。

Reaction of NO release and peroxynitrite production

1. M. Feelisch, et al., On the Mechanism of NO Release from Sydnonimines. J Cardiovasc Pharmacol. 1989;14:S13-S22.2. M. Feelisch, The Biochemical Pathways of Nitric Oxide Formation from Nitrovasodilators: Appropriate Choice of Exogenous NO Donors and Aspects of Preparation and Handling of Aqueous NO Solutions. J Cardiovasc Pharmacol. 1991;17:S25-S33.3. N. Hogg, et al., Production of Hydroxyl Radicals from the Simultaneous Generation of Superoxide and Nitric Oxide. Biochem J. 1992;281:419-424.4. M. E. Murphy, et al., Nitric Oxide Hyperpolarizes Rabbit Mesenteric Arteries via ATP-sensitive Potassium Channels. J Physiol. 1995;486:47-58.5. H. Kankaanranta, et al., 3-Morpholino-sydnonimine-induced Suppression of Human Neutrophil Degranulation in Not Mediated by Cyclic GMP, Nitric Oxide or Peroxynitrite: Inhibition of the Increase in Intracellular Free Calcium Concentration by N-Morpholinoiminoacetoni. Mol Pharmacol. 1997;51:882-888.6. S. Yamamoto, et al., Subarachnoid Hemorrhage Impairs Cerebral Blood Flow Response to Nitric Oxide but Not to Cyclic GMP in Large Cerebral Arteries. Brain Res. 1997;757:1-9.7. S. Pfeiffer, et al., Interference of carboxy-PTIO with Nitric-oxide and Peroxynitrite-mediated Reactions. Free Radic Biol Med. 1997;22:787-794.8. M. B. Herrero, et al., Tyrosine Nitration in Human Spermatozoa: A Physiological Function of Peroxynitrite, the Reaction Product of Nitric Oxide and Superoxide. Mol Hum Reprod. 2001;7:913-921.9. P. D. Lu, et al., Cytoprotection by Pre-emptive Conditional Phosphorylation of Translation Initiation Factor 2. EMBO J. 2004;23:169-179.

细胞活力和细胞毒性测定用于药物筛选和化学物质的细胞毒性测试。Dojindo开发了高度水溶性的四唑盐,称为WST。WST-8是高度稳定的WST,用于Cell Counting Kit-8(CCK-8)。由于WST-8甲maz是水溶性的,因此不会形成晶体。因此,不需要诸如MTT测定的增溶过程。此外,CCK-8的检测灵敏度高于其他四唑盐,例如MTT,XTT,MTS或WST-1。

Dojindo,DTC Na/100/D465

二乙基二硫代氨基甲酸酯 (DETC) 是一种很好的体内一氧化氮自旋捕获试剂。然而,由于其水溶性差,DETC尚未广泛用于生物样品中的NO检测。 DTCS 是 DETC 的类似物,可形成水溶性铁 (II) 络合物 (Fe-DTCS)。然后 Fe-DTCS 配合物与 NO (NO-Fe-DTCS) 形成配合物。 Yoshimura 博士成功获得了脂多糖在小鼠腹膜中诱导的 NO 的二维 ESR 图像。本实验使用 DTCS 钠盐 (DTCS Na),因为它的毒性低于铵盐(钠盐 LD50:1942 mg/kg;铵盐 LD50:765 mg/kg)。由于 Fe-DTCS 配合物在空气或水溶液中比其他二硫代氨基甲酸盐配合物更稳定,因此它可能是用于生化研究的有用的自旋捕获试剂。 Fe-DTCS 复合物应在制备后立即使用。需要过量的 DTCS Na(通常为 5 当量的 DTCS Na 到 FeSO4)才能形成更稳定的溶液。二硫代氨基甲酸盐在生理条件下倾向于分解形成有毒的二硫化碳。
Reaction of NO quenching

Preparation of Fe(II)-DTCS Complex1. 用 20 ml 水溶解 278 mg FeSO4, 7H2O(七水硫酸亚铁)a) 以制备 50 mM FeSO4 溶液。b)2。用 10 ml watera) 溶解 123 mg DTCS Na,以制备 50 mM DTCS solution.3。将 1 ml DTCS Na 溶液与 8.8 ml 缓冲溶液a)(pH 7 或更高)混合。在使用前加入 200 μl FeSO4 溶液。c)a) 在溶解 FeSO4 之前,通过氮气鼓泡至少 30 分钟清除水中或缓冲液中的任何溶解氧。b) FeSO4 溶液可在 -20ºC 下储存至少 2 个月。c) Fe(II)-DTCS 复合物是无色的。如果溶液呈棕色,则可能由于溶液中溶解氧而形成了 Fe(III)-DTCS。但棕色溶液仍可用于NO捕集。NO-Fe(II)-DTCS配合物的制备1.在氩气流下,将 200 μl FeSO4 溶液添加到 9.4 ml 缓冲溶液(pH 7 或更高)中。然后通过玻璃毛细管将 NO 气体鼓泡 15 分钟,将 NO 引入溶液中。2。向 FeSO4 溶液中加入 400 μl DTCS Na 溶液,继续鼓泡 5 分钟引入 NO。 3.用氩气鼓泡 5 分钟去除多余的 NO,并储存在 -20ºC。 NO-Fe(II)-DTCS 溶液可在 -20ºC 无氧条件下储存至少 2 个月。

1. T. Yoshimura, et al., In vivo EPR Detection and Imaging of Endogenous Nitric Oxide in Lipopolysaccharide-treated Mice. Nat Biotechnol. 1996;14:992-994.2. B. Kalyanaraman, Detectionof Nitric Oxide by Electron Spin Resonance in Chemical, Photochemical, Cellular, Physiological, and Pathophysiological Systems. Methods Enzymol. 1996;268:168-187.3. H. Yokoyama, et al., In vivo ESR-CT Imaging of the Liver in Mice Receiving Subcutenous Injection of Nitric Oxide-Bound Iron Complex. Magn Reson Imaging. 1997;15:249-253.

Dojindo,BABE/10/B437,Bromoacetamidobenzyl-EDTA (BABE) 是一种螯合标记试剂与巯基结合

Product Description of BABEs
Bromoacetamidobenzyl-EDTA (BABE) 是一种螯合标记试剂,可与巯基结合。 BABE 的铁螯合物 (FeBABE) 是一种独特的工具,用于确定蛋白质的三维结构以及蛋白质-蛋白质或蛋白质-DNA 复合物的结合结构。 BABE 通过其巯基将 EDTA 部分添加到蛋白质中。 一旦附着在蛋白质上,FeBABE 就会切割附近的肽或 DNA 链。 切割位点在 FeBABE 结合位点的 12 埃以内。 铁 (II)-螯合物在过氧化氢存在下切割肽或 DNA 链。 裂解反应迅速完成:10 秒到 20 分钟的孵育就足够了。 用凝胶电泳如 SDS-PAGE 分析切割片段的大小。

Labeling Procedure1. Dialyze the protein solution in conjugation buffer (10-20 mM MOPS, 0.2 M NaCl, 2 mM EDTA, 5% glycerol, pH 8.0) at 4ºC overnight.2. After dialysis, adjust the protein concentration to 15-30 mM.3. Add 15 ml of 20 mM FeBABE DMSO solution to 1 ml of the protein solution and incubate it at 37ºC for 1 hour. The final concentration of FeBABE is 0.3 mM (10-20X excess to the protein).4. Dialyze the reaction mixture in protein storage buffer (10-20 mM Tris, 0.1-0.2 M KCl, 10 mM MgCl2, 0.1 mM EDTA, 50% glycerol, pH 7.6) at 4ºC overnight.

1. L. H. DeRiemer, C. F. Meares, D. A. Goodwin and C. I. Diamanti, BLEDTA II: Synthesis of a New Tumer-Visualizing Derivative of Co(III)-bleomycin, J. Labelled Compd. Radiopharm., 1981, 18, 1517.2. T. M. Rana and C. F. Meares, Specific Cleavage of a Protein by an Attached Iron Chelate, J. Am. Chem. Soc., 1990, 112, 2457.3. T. M. Rana and C. F. Meares, Transfer of Oxigen from an artificial protease to peptide carbon during proteolysis, Proc. Natl. Acad. Sci. USA, 1991, 88, 10578.4. D. P. Greiner, R. Miyake, J. K. Moran, A. D. Jones, T. Negishi, A. Ishihama, and C. F. Meares, Synthesis of the Protein Cutting Reagent Iron (S)-1-(p-Bromoacetamidobenzyl) ethylebediaminetetraacetate and Conjuation to cysteine Sie Cahins, Bioconjugate Chem., 1997, 8, 44.5. E. Platis, M. R. Ermacora and R. O. Fox, Oxidative Polypeptide Cleavage Mediated by EDTA-Fe Covalently Linked to Cysteine Residue, Biochemistry, 1993, 32, 12761.6. S. L. Traviglia, S. A. Datwyler, D. Yan, A. Ishihama and C. F. Meares, Targeted Protein Footprinting: Where Different Transcription Factors bind to RNA Polymerase, Biochemistry, 1999, 38, 4259.7. J. B. Ghaim, D. P. Greiner, C. F. Meares and R. B. Gennis, Proximity Mapping the suface of Membrane Protein Using an Artificial Protease: Demonstration That the Quinone-Binding Domain of Subunit I Is near the N-Terminal Region of Subunit II of Cytochrome bd, Biochemistry, 1995, 34, 11311.8. R. Miyake, K. Murakami, J. T. Owens, D. P. Greiner, O. N. Ozoline, A. Ishihama and C. F. Meares, Dimeric Association of Escherichia coli RNA Polymerase alfa subunits, studied by Cleavage of Single-Cysteine alfa Sununits Conjugated to Iron-(S)-1-(p-(Bromoacetamido) benzyl)ethylenediaminetetraacetate, Biochemistry, 1998, 37, 1344.9. J. T. Owens, R. Miyake, K. Murakami, A. J. Chmura, N. Fujita, A. Ishihama and C. F. Meares, Mapping the sigma70 subunits contact sites on Escherichia coli RNA polymerase with a sigma70-conjugated chemical protease, Proc. Natl. Acad. Sci. USA, 1998, 95, 6021.10. J. A. Bown, J. T. Owens, C. F. Meares, N. Fujita, A. Ishihama, S. J. Busby and S. D. Minchin, Organization of open complexes at Escherichia coli promoters. Location of promoter DNA sites close to region 2.5 of the sigma70 subunit of RNA polymerase, J. Biol. Chem., 1999, 274, 2263.11. F. Colland, N. Fujita, D. Kotlarz, J. A. Bown, C. F. Meares, A. Ishihama and A. Kolb, Positioning of sigma(S), the stationary phase sigma factor, in Escherichia coli RNA polymerase-promoter open complexes, EMBO J., 1999, 18, 4049.12. G. M. Heilek, R. Marusak, C. F. Meares and H. F. Noller, Directed hydroxyl radical probing of 16S rRNA using Fe(II) tethered to ribosomal protein S4, Proc. Natl. Acad. Sci. USA, 1995, 92, 1113.13. G. M. Heilek and H. F. Noller, Site-directed hydroxyl radical probing of the rRNA neighborhood of ribosomal protein S5, Science, 1996, 272,

Dojindo,S-亚硝基谷胱甘肽/100/N415

Product Description of S-Nitrosothiols

亚硝基硫醇化合物在特定生理条件下释放 NO 并变成二硫化物。虽然大多数 S-亚硝基硫醇化合物不稳定,但 S-亚硝基谷胱甘肽却异常稳定。此外,S-亚硝基谷胱甘肽是水溶性的。尽管 S-亚硝基硫醇是一种良好的 NO 供体,没有硝酸盐耐受性,但有证据表明 S-亚硝基硫醇本身在鸟苷酸环化酶激活期间具有类似 NO 的活性。亚硝基硫醇的另一个重要反应是 NO 转移到其他硫醇化合物。由于它取决于硫醇的 pKa,因此该转移反应在生理 pH 水平下进行。这些亚硝基硫醇的弛豫效率已使用 Rataprta 环样品进行了比较:SNAP > S – N i t r o s o g l u t a t h i o n e = S – N i t r o s o – N-乙酰半胱氨酸>S-亚硝基辅酶 A>S-亚硝基-L-半胱氨酸。 Kowaluk 博士和其他人报告说,从 SNAP 中自发释放 NO 不能解释体外血管舒张。 NO 从亚硝基硫醇化合物中的自发释放可能不是血管舒张的关键因素。在细胞膜上产生的亚硝基硫醇代谢物可能是松弛的必要元素。

1. A. Gibson, et al., An Investigation of Some S-Nitrosothiols, and of Hydroxy-arginine, on the Mouse Anococcygeus. Br J Pharmacol. 1992;107:715-721.2. M. W. Radomski, et al., S-Nitroso-glutathione Inhibits Platelet Activation in Vitro and in Vivo. Br J Pharmacol. 1992;107:745-749.3. R. M. Clancy, et al., Novel Synthesis of S-Nitrosoglutathione and Degradation by Human Neutrophils. Anal Biochem. 1992;204:365-371.4. J. W. Park, et al., Transnitrosation as a Predominant Mechanism in the Hypotensive Effect of S-Nitrosoglutathione. Biochem Mol Biol Int. 1993;30:885-891.5. D. Barrachina, et al., Nitric Oxide Donors Preferencially Inhibit Neuronally Mediated Rat Gastric Acid Secretion. Eur J Pharmacol. 1994;262:181-183.6. E. A. Konorev, et al., S-Nitrosoglutathione Improves Functional Recovery in the Isolated Rat Heart After Cardioplegic Ischemic Arrest-evidence for a Cardioprotective Effect of Nitric Oxide. J Pharmacol Exp Ther. 1995;274:200-2006.7. S. C. Askew, et al., Catalysis by Cu2+ of Nitric Oxide Release from S-Nitrosothiols (RSNO). J Chem Soc Perkin Trans 2. 1995;741-745.8. D. J. Banett, et al., NO-group Transfer(Transnitrosation) between S-Nitrosothiols and Thiols. Part 2. J Chem Soc Perkin Trans 2. 1995;1279-1282.9. J. G. De Man, et al., Effect of Cu2+ on Relaxations to the Nitrergic Neurotransmitter, NO and S-Nitrosothiols in the Rat Gastric Fundus. Br J Pharmacol. 1996;119:990-996.10. A. P. Dicks, et al., Generation of Nitric Oxide from S-Nitrosothiols Using Protein-bound Cu2+ Sources. Chem Biol. 1996;3:655-659.11. J. A. Cook, et al., Convenient Colorimetric and Fluorometric Assays for S-Nitrosothiols. Anal Biochem. 1996;238:150-158.12. S. X. Liu, et al., Nitric Oxide Donors: Effects of S-Nitrosoglutathione and 4-Phenyl-3-furoxancarbonitrile on Ocular Blood Flow and Retinal Function Recovery. J Ocul Pharmacol Ther. 1997;13:105-114.13. C. Alpert, et al., Detection of S-Nitrosothiols and Other Nitric Oxide Derivatives by Photolysis-chemiluminescence Spectrometry. Anal Biochem. 1997;245:1-7.14. T. Akaike, et al., Nanomolar Quantification and Identification of Various Nitrosothiols by High Performance Liquid Chromatography Coupled with Flow Reactors of Metals and Griess Reagent. J Biochem. 1997;122:459-466.

Dojindo,ABD-F/100/A016,ABD-F 通过巯基反应产生高荧光化合物

ABD-F 具有苯并呋喃部分,可通过与巯基反应产生高荧光化合物。 衍生化合物的激发和发射波长分别为 389 nm 和 513 nm。 ABD-F的反应速度比SBD-F快30倍。 在 50ºC、pH 8 的水性条件下,ABD-F 与硫醇化合物的反应在 5 分钟内完成。但是,ABD-F 在这些条件下不与丙氨酸、脯氨酸或胱氨酸反应。 在 pH 2 时可以观察到其最大荧光强度。在反相 HPLC 分析中,可以单独检测预标记的 ABD-硫醇化合物。 检测限 (S/N=3) 为半胱氨酸每次注射 0.6 pmol,谷胱甘肽每次注射 0.4 pmol,N-乙酰半胱氨酸每次注射 1.9 pmol,半胱胺每次注射 0.5 pmol。

ABD Labeling Protocol1. To prepare sample solution, mix or dissolve a sample with 100 mM borate buffer, pH 8.0 containing 2 mM EDTA.2. Mix 500 μl of the sample solution and 500 μl of 1 mM ABD-F/100 mM borate buffer in a reaction vial.3. Heat the vial at 50ºC for 5 minutes and cool it on an ice bath.4. Add 300 μl of 100 mM HCl aqueous solution to the reaction mixture.5. Use this mixture for HPLC analysis to determine ABD-labeled compounds; excitation: 389 nm, emission: 513 nm.

1. T. Toyo’oka, et al., New Fluorogenic Reagent Having Halogenobenzofurazan Structure for Thiols: 4-(Aminosulfonyl)-7-fluoro-2, 1, 3-benzoxadiazole. Anal Chem. 1984;56:2461-2464.2. T. Toyo’oka, et al., Isolation and Characterization of Cysteine-Containing Regions of Proteins Using 4-(Aminosulfonyl)-7-fluoro-2, 1, 3-benzoxadiazole and High-Performance Liquid Chromatography. Anal Chem. 1985;57:1931-1937.3. T. Toyo’oka, et al., Amino Acid Composition Analysis of Minute Amounts of Cysteine-containing Proteins Using 4-(Aminosulfonyl)-7-fluoro-2, 1, 3-benzoxadiazole and 4-fluoro-7-nitro-2, 1, 3-benzoxadiazole in Combination with HPLC. Biomed Chromatogr. 1986;1:15-20.4. T. Toyo’oka, et al., Simultaneous Determination of Thiols and Disulfides by High-performance Liquid Chromatography with Fluorescence Detection. Anal Chim Acta. 1988;205:29-41.5. Y. Luo, et al., Antichymotrypsin interaction with chymotrypsin. Intermediates on the way to inhibited complex formation. J Biol Chem. 1999;274:17733-17741.

Dojindo,ICG-Sulfo-OSu/1/I254,ICG 是用于确定心输出量

ICG 是用于确定心输出量、肝功能和肝血流量以及用于眼科血管造影的染料之一。 它具有长的激发波长和发射波长,分别约为 780 nm 和 800 nm。 由于其在红外区域附近的长波长和低细胞毒性,ICG 被用于标记抗体以进行体内测定。 然而,与蛋白质结合后的荧光强度非常低,因为在激发后会形成 H-二聚体或能量转移至抗体分子。 Kobayashi 博士和其他人报告说,结合物使用 SDS 和 betamecraptoethanol 通过减少疏水性 p-p 相互作用和 IgG 链的分离显着增加了荧光强度。 他们将经过处理的 ICG 偶联的 daclizumab(人源化单克隆抗体)和人源化抗 HER IgG2 单克隆抗体用于体内检测,以特异性观察肿瘤。
Structural Formula
1. Prepare 6.8 nmol antibody solution with pH 8.5 carbonate buffer or bicine buffer (Good’s buffer).2. Add 6.8-68 nmol of ICG-Sulfo-OSu/DMSO solution to the antibody solution and incubate at room temperature for 30 minutes.3. Purify the reaction mixture with a sephadex G50 column.

Dojindo,SBD-F/100/S013,SBD-F 是一种水溶性试剂

SBD-F 是一种水溶性试剂,可与巯基反应生成高荧光化合物。 HPLC分析硫醇化合物如谷胱甘肽、半胱氨酸、N-乙酰半胱氨酸、CoA和BSA的检测限为每次注射100-500 pmol。衍生化合物的激发和发射分别为385 nm和515 nm .

1. K. Imai, et al., A Novel Fluorogenic Reagent for Thiols: Ammonium 7-Fluorobenzo-2-Oxa-1, 3-Diazole-4-Sulfonate. Anal Biochem. 1983;128:471-473.2. T. Toyo’oka, et al., High-Performance Liquid Chromatography and Fluorometric Detection of Biologically Important Thiols, Derivatized with Ammonium 7-Fluorobenzo-2-Oxa-1, 3-Diazole-4-Sulphonate(SBD-F). J Chromatogr. 1983;282:495-500.3. T. Toyo’oka, et al., Fluorescence Analysis of Thiols with Ammonium 7-Fluorobenzo-2-Oxa-1, 3-Diazole-4-Sulphonate. Analyst. 1984;109:1003-1007.4. T. Toyo’oka, et al., Determinaiton of Total Captopril in Dog Plasma by HPLC After Prelabelling with Ammonium 7-Fluorobenzo-2-Oxa-1, 3-Diazole-4-Sulphonate(SBD-F). J Pharm Biomed Anal. 1984;2:473-479.5. T. Sueyoshi, et al., Application of a Fluorogenic Reagent, Ammonium 7-Fluorobenzo-2-Oxa-1, 3-Diazole-4-Sulphonate for Detection of Cystine-Containing Peptides. J Biochem. 1985;97:1811-1813.6. T. Toyo’oka, et al., Simultaneous Determination of Thiols and Disulfides by High-performance Liquid Chromatography with Fluorescence Detection. Anal Chim Acta. 1988;205:29-41.7. T. Araki, et al., The Position of the Disulfide Bonds in Human Plasmaα2HS-glycoprotein and the Repeating Double Disulfide Bonds in the Domain Structure. Biochim Biophys Acta. 1989;994:195-199.8. B. A. McMullen, et al., Location of the Disulfide Bonds in Human Plasma Prekallikrein; The Presence of Four Novel Apple Domains in the Amino-Terminal Portion of the Molecule. Biochemistry. 1991;30:2050-2056.9. D. Hess, et al., Identification of the Disulfide Bonds of Human Complement C1s. Biochemistry. 1991;30:2827-2833.

Dojindo,HiLyte Fluor 647标记试剂盒-NH2/3/LK15

HiLyte Fluor* 647 Labeling Kit-NH2 主要用于制备红色荧光标记的蛋白质,例如用于免疫染色的 IgG,以及用于示踪的细胞蛋白质。 NH2 反应性 HiLyteFluor 647 是该试剂盒的一个组成部分,具有与蛋白质或其他分子上的氨基反应的琥珀酰亚胺基 (NHS)(图 1)。 该试剂盒包含标记所需的所有试剂。 每管 HiLyte Fluor 647 最多可标记 200 μg 的 IgG,每个 IgG 分子可结合约 4 至 6 个 HiLyte Fluor 647 分子。 标记过程很简单——将 NH2 反应性 HiLyte Fluor 647 添加到膜上的 IgG 溶液中,并在 37ºC 下孵育 10 分钟。 多余的 HiLyte Fluor 647 分子可以通过过滤管去除。 HiLyte Fluor 647 标记的 IgG 的激发和发射波长分别为 652 nm 和 673 nm(图 2)。 *HiLyte Fluor 是 AnaSpec, Inc. 的商标。

Fig. 1 Fluorescence Spectrum of HiLyte Fluor 647-conjugated IgG

Fig. 2 Fluorescence spectrum of HiLyte Fluor 647-conjugated IgG______excitation spectrum______emission spectrum

Precaution♦ The molecular weight of the protein to be labeled with this kit should be greater than 50,000.♦ IgG or HiLyte Fluor 647-conjugated IgG is always on the membrane of the filtration tube during the labeling process.♦ If the IgG solution contains other proteins with molecular weights larger than 10,000, such as BSA or gelatin, purify the IgG solution before labeling HiLyte Fluor 647 with this kit. IgG solution can be purified by IgG Purification Kits (not included in this kit).♦ If the IgG solution contains small insoluble materials, centrifuge the solution and use the supernatant for the labeling.

1. S. Hiroyasu, T. Ozawa, H. Kobayashi, M. Ishii, Y. Aoyama, Y. Kitajima, T. Hashimoto, J.C.R. Jones and D. Tsuruta, “Bullous pemphigoid IgG induces BP180 internalization via a macropinocytic pathway”, Am. J. Pathol.., 2013, 182, (3), 828.2. W. Jin, K. Yamada, M. Ikami, N. Kaji, M. Tokeshi, Y. Atsumi, M. Mizutani, A. Murai, A. Okamoto, T. Namikawa, Y. Baba, M. Ohta, “Application of IgY to sandwich enzyme-linked immunosorbent assays, lateral flow devices, and immunopillar chips for detecting staphylococcal enterotoxins in milk and dairy products”, J. Microbiol. Methods., 2013, 92, (3), 323.3. Y. Hayashi, M. Okutani, S. Ogawa, T. Tsukahara, R. Inoue, “Generation of anti-porcine CD69 monoclonal antibodies and their usefulness to evaluate early activation of cellular immunity by flow cytometric analysis”, Anim. Sci. J.., 2018, 89, (5), 825.

Can I use this kit for other proteins?

是的,如果分子量大于 50,000。

在标记蛋白质之前是否必须使用过滤管?
如果蛋白质溶液不含带氨基的小分子,蛋白质浓度为10 mg/ml,或约70 μM,则无需使用过滤管。 将 10 μl 样品溶液与 90 μl 反应缓冲液混合,然后将 8 μl NH2 反应性 HiLyte Fluor 647(在步骤 3 中制备)添加到混合物中,然后按照从步骤 4 开始的方案进行操作。

How long is the HiLyte Fluor 555-labeled protein stable?

If you store at 4oC, it is stable for over 2 months. For longer storage, add 100% volume of glycerol, aliquot, and store at -20oC. However, please note that stability depends on the protein itself.

What is the minimum amount of IgG that can be labeled by this kit?

The minumum amount of IgG is 10 μg. For less than 20 μg, follow the manual and add 4 μl NH2-reactive HiLyte Fluor 647 instead of 8 μl at step 4.

Can I use this kit to label oligonucleotides or peptides?

No. Oligonucleotides and peptides may be too small to retain on the membrane filter of the Filtration tube.

Dojindo,DPPP/10/D350,DPPP 是一种非荧光三苯基膦化合物

DPPP 是一种非荧光三苯基膦化合物。 它与氢过氧化物反应生成 DPPP 氧化物,在 352 nm 激发和 380 nm 发射波长下发射荧光(图 1)。 柱后 HPLC 法用于测定样品溶液中的过氧化磷脂。
Fig 1. DPPP reaction with lipid peroxidase
1. K. Akasaka, et al., Study on Aromatic Phosphines for Novel Fluorometry of Hydroperoxides(II) – the Determination of Lipid Hydroperoxides with Diphenyl-1-Pyrenylphosphine-. Anal Lett. 1987;20:797-807.2. K. Akasaka, et al., An Aromatic Phosphine Reagent for the HPLC-fluorescence Determination of Hydroperoxides -Determination of Phosphatidylcholine Hydroperoxides in Human Plasma. Anal Lett. 1988;21:965-975.3. K. Akasaka, et al., A Simple Fluorometry of Hydroperoxides in Oils and Foods. Biosci Biotech Biochem. 1992;56:605-607.4. K. Akasaka, et al., High-performance Liquid Chromatography and Post-Column Derivatization with Diphenyl-1-Pyrenylphosphine for Fluorimetric Determination of Triacylglycerol Hydroperoxides. J Chromatogr. 1992;596:197-202.5. K. Akasaka, et al., Simultaneous Determination of Hydroperoxides of Phosphatidylcholine, Cholesterol Esters and Triacylglycerols by Column-Switching High-Performance Liquid Chromatography with a Post-column Detection system. J Chromatogr. 1993;622:153-159.6. K. Akasaka, et al., Normal-phase High-performance Liquid Chromatograohy with a Fluorimetric Postcolumn Detection System for Lipid Hydroperoxides. J Chromatogr A. 1993;628:31-35.7. Y. Okimoto, et al., A Novel Fluoresceint Probe Diphenyl-pyrenylphosphine to Follow Lipid Peroxidation in Cell Membranes. FEBS Lett. 2000;474:137-140

Dojindo,用于线粒体单线态氧成像的 Si-DMA/2/MT05

单线态氧 (1O2) 是活性氧 (ROS) 中的一种。众所周知,1O2 是导致皮肤出现斑点和皱纹的原因,因为它具有很强的氧化潜力。在癌症研究领域,1O2 特别重要,因为它在光动力疗法 (PDT) 中发挥着关键作用,这是一种使用光辐照和光敏剂的新兴抗癌疗法。对于1O2的检测,现有的单线态氧荧光检测试剂由于其细胞膜不透性,不能用于活细胞。
马岛等人。合成了一种由含硅罗丹明和蒽部分组成的新型远红荧光探针,即 Si-DMA,分别作为生色团和 1O2 反应位点。在 1O2 存在下,由于蒽部分 (1),(2) 形成内过氧化物,Si-DMA 的荧光增加了 17 倍。在七种不同的 ROS 中,Si-DMA 能够选择性地检测 1O2(图 3)。此外,Si-DMA 能够用 5-氨基乙酰丙酸 (5-ALA)(血红素的前体)实时显示线粒体中原卟啉 IX 生成 1O2。
1. S. Kim, T. Tachikawa, M. Fujitsuka, T. Majima, “Far-Red Fluorescence Probe for Monitoring Singlet Oxygen during Photodyanamic Therapy”, J. Am. Chem. Soc., 2014, 136 (33), 11707-11715.

Usage ExampleFluorescence microscopic detection of 1O2 in HeLa cells after added 5-aminolevulinic acid (5-ALA)1. HeLa cells (2.4×105 cells/ml, Hanks’ HEPES buffer 200 μl) were seeded on a μ-slide 8 well (Ibidi) and cultured at 37oC in a 5%CO2 incubator overnight.2. Cells were washed with 200 μl Hanks’ HEPES buffer twice.3. 150 μg/ml of 5-ALA in Hanks’ HEPES buffer was added to the μ-slide and cultured at 37oC in a 5%CO2 incubator for 4 hours.4. Cells were washed with 200 μl Hanks’ HEPES buffer twice.5. 200 μl of Si-DMA working solution (40 nmol/L) was added and cultured at 37oC in a 5%CO2 incubator for 45 minutes.6. Cells were washed with 200 μl Hanks’ HEPES buffer twice.7. 200 μl Hanks’ HEPES buffer was added and observe the cells under a fluorescence microscope.

Dojindo,2,3-二氨基萘(不检测)/10/D418,Griess 法是检测 NO 浓度的方法

Griess 法是一种简单而流行的检测 NO 浓度的方法。 2,3-二氨基萘 (DAN) 是 Griess 测定法的高灵敏度替代方法。 DAN 方法的灵敏度比 Griess 检测高 50-100 倍:Griess 检测的检测限为 1 mM,而 DAN 方法的检测限为 10-50 nM。 DAN 在酸性条件下与 NO2– 反应生成荧光萘三唑。萘三唑的最大发射波长为410 nm。但是,建议在 450 nm 处检测以避免荧光空白并提高灵敏度。 DAN 的荧光背景很低,可实现最大灵敏度。确定了 DAN 与 NO2- 的最佳反应条件。反应应在 pH 2 和室温下进行 5 分钟,萘三唑产生的荧光应在 pH 10 或更高时测定。 DAN 是一种光敏试剂,有时会变成深棕色晶体。由于这种棕色产物不能用于荧光检测,因此需要重结晶。

Reaction of 2,3-Diaminonaphthalene with NO2

NO2 Assay Using 2,3-Diaminonaphthalene (DAN)1. Dissolve 50 μg DAN in 1 ml 0.62 M HCl to prepare 0.31 mM DAN solution.a)2. Mix 10 μl DAN solution with 100 μl NaNO2 solution (0-10 mM) or sample solution. Incubate the mixture at room temperature for 10-15 minutes.3. Add 5 μl 2.8 M NaOH solution to the reaction solution.b)4. Dilute 100 μl of this solution with 4 ml water, followed by fluorescent measurement with excitation wavelength at 365 nm and emission wavelength at 450 nm.5. Prepare a calibration curve using this data where the X-axis is NaNO2 concentration and the Y-axis is fluorescence intensity. Then, use this calibration curve to determine the NO2 concentration of the sample solution.

a) Acidic conditions are required for a rapid reaction.b) Basic conditions (pH 10 or higher) are required for a high fluorescence signal.

C. R. Sawicki, Anal. Lett., 4, 761 (1971);P. Damiani, et al., Talanta, 8, 649 (1986);W. R. Tracey, et al., J. Pharmacol. Exp. Ther., 252, 922 (1990);J. S. Pollock, et al., Proc. Natl. Acad. Sci. USA, 88, 10480 (1991);T. P. Misko, et al., Anal. Biochem., 214, 11 (1993);R. G. Tilton, et al., Invest. Ophthamol. Vis. Sci., 35, 3278 (1994);T. A. Mayer, et al., J. Surg. Res., 58, 570 (1995);Y. Kono, et al., Biochem. J., 312, 947 (1995);R. Metheringham, et al., Microbiology, 143, 2647 (1997);A. M. Rao, et al., Brain Res., 793, 265 (1998);N. Nakatsubo, et al., Biol. Pharm. Bull., 21, 1247 (1998);D. Jourd’heuil, et al., Arch. Biochem. Biophys., 365, 92 (1999).

Dojindo,Sulfo-KMUS/50/S250

杂双功能交联剂具有活化的酯和马来酰亚胺反应基团。 这些官能团分别与蛋白质的胺和巯基反应。 酶标记的半抗原是使用异双功能交联剂(例如 EMCS 或 GMBS)制备的。 交联反应需要中性 pH 值和温和的温度,因为在交联反应中需要保持酶活性和抗体滴度。 可使用具有 3、5、7 或 10 个线性碳链的异双功能交联剂。 这些线性脂肪链充当两个反应位点与其水溶性试剂之间的间隔物。 在更宽的 pH 范围内,它们比芳香族交联剂(例如 succinimidyl-4-N-maleimidobenzoate)更稳定。

Conjugation of Macromolecules with Hetero-Bifunctional Cross-Linking Reagent

Hetero-bifunctional Reagents

Product Name Code Length (Å)
Sulfo-EMCS S024 9.4
Sulfo-GMBS S025 6.9
Sulfo-HMCS S026 13.0
Sulfo-KMUS S250 16.7
Sulfo-SMCC S330 8.0
1. J. V. Staros, N-Hydroxysulfosuccinimide Active Esters:Bis(N-hydroxysulfosuccinimide) Esters of Two Dicarboxylic acids Are Hydrophilic, Membraneimpermeant, Protein Cross-linkers, Biochemistry, 1982, 21, 3950.2. P. S. R. Anjaneyulu, James V. Staros, Reactions of N-Hydroxysulfosuccinimide Active Esters, Int. J. Peptide Protein Res., 1987, 30, 117.3. Y. Fukami, K. Sato, K. Ikeda, K. Kamisango, K. Koizumi and T. Matsuno, Evidence for Autoinhibitory Regulation of the c-src Gene Product a Possible Interaction Between the Src Homology 2 Domain and Autophosphorylation Site, J. Biol. Chem., 1993, 268, 1132.

Dojindo,总谷胱甘肽定量试剂盒/100/T419

谷胱甘肽 (GSH) 是动物组织、植物组织、细菌和酵母中含量最丰富的硫醇化合物。 GSH 具有许多不同的作用,包括防止活性氧和维持蛋白质硫醇基团。在这些过程中,GSH 被转化为其氧化形式,谷胱甘肽二硫化物 (GSSG)。由于 GSSG 随后被谷胱甘肽还原酶酶促还原,因此 GSH 是生物体中的主要形式。 DTNB(5,5 EDithiobis(2-nitrobenzoic acid))被称为 Ellman 试剂,用于检测硫醇化合物。 1985年,M. E. Anderson博士提出DTNB和谷胱甘肽还原酶的谷胱甘肽循环系统可以作为一种高灵敏度的谷胱甘肽检测方法。 DTNB 和 GSH 反应生成图 1 中的 5-Mercapto-2-nitrobenzoic acid (TNB)。由于 TNB 是黄色的,样品溶液中的 GSH 浓度可以通过 O.D. 确定。在 412 nm 吸光度下测量(图 2)。 GSH 通过谷胱甘肽还原酶从 GS-TNB 再生,并再次与 DTNB 反应生成 TNB。这种再循环反应提高了总谷胱甘肽检测的灵敏度。总谷胱甘肽定量试剂盒包含总谷胱甘肽测量所需的所有试剂,样品制备中使用的试剂除外。推荐使用 5-磺基水杨酸从样品溶液中去除蛋白质,并防止 GSH 氧化和 γ-谷氨酰转肽酶反应。但是,样品制备的最佳方法因样品而异,因此请查看参考资料。该试剂盒可用于使用标准方法定量 1 μM 至 100 μM 的总谷胱甘肽浓度。对于较低的谷胱甘肽浓度,例如在血液样本中,需要更长的孵育时间。
Mechanism of total glutathione quantificationAbsorption spectrum of 5-Mercapto-2-nitrobenzoic acid in phosphate buffer (pH 7.5)

Assay Procedure

Preparation of Various Sample SolutionCells (Adhesive cells: 5×105 cells; Leukocyte cells: 1×106 cells)1. Collect cells by centrifugation at 200 g for 10 min at 4°C. Discard the supernatant.2. Wash the cells with 300 μl PBS and centrifuge at 200 g for 10 min at 4°C. Discard the supernatant.3. Add 80 μl 10 mM HCl, and lyse the cells by freezing and thawing twice.4. Add 20 μl 5% SSA and centrifuge at 8,000 g for 10 min.5. Transfer the supernatant to a new tube, and use it for the assay. If the final concentration of SSA is over 1%, add ddH2O to reduce the concentration of SSA from 0.5 to 1%.Tissue (100 mg)1. Homogenize the tissue in 0.5-1.0 ml 5% SSA.2. Centrifuge the homogenized tissue sample at 8,000 g for 10 min.3. Transfer the supernatant to a new tube and add ddH2O to reduce the concentration of SSA from 0.5 to 1%. Use it for the assay.

Plasma1. Centrifuge anticoagulant-treated blood at 1,000 g for 10 min at 4°C.2. Transfer the top plasma layer to a new tube and add 5% SSA equivalent to half of the volume of the plasma.3. Centrifuge at 8,000 g for 10 min at 4°C4. Transfer the supernatant to a new tube, and add ddH2O to reduce the concentration of SSA from 0.5 to 1%. Use it for the assay.

Erythrocytes1. Centrifuge anticoagulant-treated blood at 1,000 g for 10 min at 4°C.2. Discard the supernatant and the white buffy layer.3. Lyse the erythrocytes with 5% SSA equivalent to 4 times the volume of the erythrocytes.4. Centrifuge at 8,000 g for 10 min at 4°C.5. Transfer the supernatant to a new tube, and add ddH2O to reduce the concentration of SSA from 0.5 to 1%. Use it for the assay. Erythrocytes can be isolated from the remaining sample solution after the plasma sample isolation.

Preparation of Assay SolutionsPreparation of 5% 5-Sulfosalicylic Acid (SSA) SolutionNote: SSA is not included in this kit.1. Dissolve 1 g SSA in 19 ml water.2. Store the solution at 4°C (stable for 6 months at 4°C).

Substrate Working SolutionAdd 1 ml Buffer Solution to 1 vial of Substrate, and dissolve. Substrate working solution is stable for 2 months at -20ºC.Enzyme Working SolutionMix Enzyme solution with pipetting before using. Take out 20 μl Enzyme solution and mix it with 4 ml Buffer solution. Enzyme working solution is stable for 2 months at 4ºC.Coenzyme Working SolutionAdd 0.7 ml ddH2O to the Coenzyme vial and dissolve. If you don’t use all of the coenzyme working solution in one day, aliquot it into microtubes and store at -20ºC. If you use all of the coenzyme working solution in one day, just add 6.3 ml Buffer solution to the vial.The Coenzyme vial is under vacuum pressure; carefully open the cap or use a syringe to add Buffer solution. Since the Coenzyme working solution dissolved in the Buffer solution is not stable, use it in one day. The coenzyme solution prepared with ddH2O is only stable for 2 months at -20oC. Dilute 10 times with Buffer solution to prepare Working solution prior to use.GSH Standard SolutionsTo prepare 200 μM GSH standard solution, add 2 ml of 0.5-1% SSA to the Standard GSH vial and dissolve. Dilute 100 μl of the 200 μM GSH standard solution with 100 μl of 0.5% SSA, and repeat using serial dilution to prepare the following GSH standard solutions:100 μM, 50 μM, 25 μM, 12.5 μM, 6.25 μM, 3.13 μM, 1.56 μM and 0.The Standard GSH vial is under vacuum pressure; carefully open the cap or use a syringe to add SSA. GSH powder is difficult to see. The GSH standard solutions are stable for 2 months at -20°C.

Total Glutathione Detection – Standard MethodDetection Range: 5-100 μM1. To each well, add 20 μl of Enzyme working solution, 140 μl of Coenzyme working solution, and 20 μl of either one of the GSH standard solutions or the sample solution.a)2. Incubate the plate at 37°C for 10 min.3. Add 20 μl of Substrate working solution, and incubate the plate at 37°C for 5-10 min.4. Read the absorbance at 405 nm or 415 nm using a microplate reader.5. Determine the concentration of GSH in the sample solution using a calibration curveb).

a) Adjust the concentration of SSA in the sample solution to 0.5-1% with ddH2O before the assay. High concentrations of SSA (>1 %) interfere with the assay.b) Since the colorimetric reaction is stable and the O.D. increases linearly over 30 min, GSH concentration can be determined by kinetic or pseudo-endpoint (no stopping reaction, quick measurement of O.D. at certain time periods between 5 and 10 min) methods.

Total Glutathione Detection – High Sensitivity Method Detection Range: 0.5-25 μM1. To each well, add 20 μl of Enzyme working solution, 140 μl of Coenzyme working solution, and 20 μl of either one of the GSH standard solutionsa) or the sample solutionb).2. Incubate the plate at 30°C for 10 min.3. Add 20 μl of Substrate working solution, and incubate the plate at 37°C for 20-40 min.4. Read the absorbance at 405 nm or 415 nm using a microplate reader.5. Determine the concentration of GSH in the sample solution using a calibration curve.

a) Prepare 50 mM GSH standard solution, and then prepare different concentrations of GSH standard solutions by serial dilution with 0.5% SSA as follows: 25 μM, 12.5 μM, 6.25 μM, 3.13 μM, 1.56 μM, 0.78 μM, 0.39 μM and 0.b) Adjust the concentration of SSA in the sample solution to 0.5-1% with ddH2O before the assay. Higher concentrations of SSA (>1%) interfere with the assay.

Determination of Total Glutathione (GSH and GSSG) ConcentrationDetermine the total glutathione concentration in the sample solution using the following equations. Since the values obtained by these equations are the amount of total glutathione in treated sample solutions, further calculations are necessary if the actual concentration of glutathione in cells or tissues needs to be determined.

1. G. L. Ellman, Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82:70-77.2. O. W. Griffith, Determination of Glutathione and Glutathione Disulfide Using Glutathione Reductase and 2-Vinylpyridine. Anal Biochem. 1980;106:207-212.3. M. E. Anderson, Determination of Glutathione and Glutathione Disulfide in Biological Samples. Methods Enzymol. 1985;113:548-555.4. M. A. Baker, et al., Microtiter Plate Assay for the Measurement of Glutathione and Glutathione Disulfide in Large Numbers of Biological Samples. Anal Biochem. 1990;190:360-365.5. C. Vandeputte, et al., A Micrototer Plate Assay for Total Glutathione and Glutathione Disulfide Contents in Cultured/isolated Cells: Performance Study of a New Miniaturized Protocol. Cell Biol Toxicol. 1994;10:415-421.6. S. A. McGrath-Morrow, et al., Inhibition of Glutamine Synthetase in A549 Cells During Hyperoxia. Am J Respir Cell Mol Biol. 2002;27:99-106.7. T. Sato, et al., Senescence Marker Protein-30 Protects Mice Lungs from Oxidative Stress, Aging, and Smoking. Am J Respir Crit Care Med. 2006;174:530-537.8. M. L. Mulhern, et al., The Unfolded Protein Response in Lens Epithelial Cells from Galactosemic Rat Lenses. Invest Ophthalmol Vis Sci. 2006;47:3951-3959.

Calibration Curve

Fig. 4 Calibration curves prepared using pseudo-endpoint method and kinetic methodA) Calibration curve prepared using pseudo-endpoint method. 10 min incubation at room temperature.B) Calibration curve prepared using kinetic method.

Pseudo-endpoint method:Total glutathione = (O.D.sample O.D.blank) / slopea)Kinetic method:Total glutathione = (Slopesampleb)-Slopeblankb))/slopeb)

a)The slope of the calibration curve prepared by the pseudo-endpoint or kinetic method.b)The slope of the kinetic reaction.

Do I have to dilute the sample solution prior to the assay?
If you do not know the total glutathione level of your sample, multiple dilutions may be necessary. If the total glutathione level of your sample is less than 100 μM, no dilution is necessary.
What interferes with the assay?
Reducing agents (such as ascorbic acid, beta-mercaptoethanol, dithiothreitol, and cysteine) and thiol reactive compounds (such as maleimides) interfere with the glutathione assay. Therefore, reducing agents and thiol reactive compounds should be avoided during the sample preparation.

Dojindo,过氧化物酶标记试剂盒-NH2/1/LK11,Peroxidase Labeling Kit-NH2

过氧化物酶标记试剂盒-NH2 主要用于制备过氧化物酶标记的 IgG 用于酶免疫分析 (EIA) 和制备过氧化物酶标记的抗原用于竞争性 EIA。 NH2 反应性过氧化物酶是该试剂盒的一个组成部分,具有琥珀酰亚胺基 (NHS),可与结构中具有氨基的蛋白质或其他分子发生反应(图 1)。该试剂盒包含标记过程所需的所有试剂,包括储存缓冲液。标记过程很简单:将 IgG 与 NH2 反应性过氧化物酶混合并在 37ºC 下孵育 2 小时。 NH2 反应性过氧化物酶无需任何激活过程即可与靶分子形成共价键。 NHS 与过氧化物酶的距离约为 1.2 nm,是过氧化物酶分子半径的一半。因此,当过氧化物酶标记的IgG用于EIA时,NH2反应性过氧化物酶的标记效率足够高,可以省去标记后的纯化过程。此外,过氧化物酶标记不会影响目标分子的亲和力。如果标记后需要高纯度偶联物,只需使用亲和柱或凝胶渗透柱即可。标记小分子时,可以使用该套件中包含的过滤管去除多余的分子。因为 NH2 反应性过氧化物酶的氨基被封闭,所以不可能进行自结合。

Fig.1 IgG labeling reaction of NH2-reactive peroxidase

Precaution♦ The molecular weight of the protein to be labeled with this kit should be greater than 50,000.♦ The molecular weight of the small amine compound to be labeled with this kit should be smaller than 5,000.♦ IgG or peroxidase-conjugated IgG is always on the membrane of the filtration tube during the labeling process.♦ If the IgG solution contains other proteins with a molecular weight greater than 10,000, such as BSA or gelatin, purify the IgG solution before labeling peroxidase with this kit. IgG solution can be purified by IgG Purification Kits (not included in this kit).♦ If the IgG solution contains small insoluble materials,centrifuge the solution and use the supernatant for labeling.

1. A. Miyagawa-Yamaguchi, N. Kotani, and K. Honke, “Expressed Glycosylphosphatidylinositol-Anchored Horseradish Peroxidase Identifies Co-Clustering Molecules in Individual Lipid Raft Domains”, PLoS ONE., 2014, 9, (3), e93054.2. J. Zhang, D. Klufas, K. Manalo, K. Adjepong, J.O. Davidson, G. Wassink, L. Bennet, A.J. Gunn, E.G. Stopa, K. Liu, M. Nishibori, and B.S. Stonestreet, “HMGB1 Translocation After Ischemia in the Ovine Fetal Brain”, J. Neuropathol. Exp. Neurol.., 2016, 75, (6), 527.3. M. Okumura, T. Ozawa, H. Hamana, Y. Norimatsu, R. Tsuda, E. Kobayashi, K. Shinoda, H. Taki, K. Tobe, J. Imura, E. Sugiyama, H. Kishi, and A. Muraguchi, “Autoantibodies reactive to PEP08 are clinically related with morbidity and severity of interstitial lung disease in connective tissue diseases”, Eur. J. Immunol.., 2018, 48, (10), 1717.4. R. Sugisawa, G. Komatsu, E. Hiramoto, N. Takeda, K. Yamamura, S. Arai, and T. Miyazaki, “Independent modes of disease repair by AIM protein distinguished in AIM-felinized mice”, Sci. Rep.., 2018, 8, 13157.5. S. Takatsuka, T. Inukai, S. Kawakubo, T. Umeyama, M. Abe, K. Ueno, Y. Hoshino, Y. Kinjo, Y. Miyazaki, and S. Yamagoe, “Identification of a Novel Variant Form of Aspergillus fumigatus CalC and Generation of Anti-CalC Monoclonal Antibodies”, Med Mycol J., 2019, 60, (1), 11.6. T. Sasaki, K. Liu,T. Agari, T. Yasuhara, J. Morimoto, M. Okazaki, H. Takeuchi, A. Toyoshima, S. Sasada, A. Shinko, A. Kondo, M. Kameda, I. Miyazaki, M. Asanuma, CV. Borlongan, M. Nishibori, and I. Date, “Anti-high mobility group box 1 antibody exerts neuroprotection in a rat model of Parkinson’s disease”, Exp. Neurol.., 2016, 275, 220.7. T. Tsumuraya, I. Fujii, M. Inoue, A. Tatami, K. Miyazaki, and M. Hirama, “Production of monoclonal antibodies for sandwich immunoassay detection of ciguatoxin 51-hydroxyCTX3C”, Toxicon., 2006, 48, (3), 287.8. W. Jin, K. Yamada, M. Ikami, N. Kaji, M. Tokeshi, Y. Atsumi, M. Mizutani, A. Murai, A. Okamoto, T. Namikaw, Y. Baba, and M. Ohta, “Application of IgY to sandwich enzyme-linked immunosorbent assays, lateral flow devices, and immunopillar chips for detecting staphylococcal enterotoxins in milk and dairy products”, J. Microbiol. Methods., 2013, 92, (3), 323.9. W.W.P.N. Weerakoon, M. Sakase, N. Kawate, M.A. Hannan, N. Kohama, and H. Tamada, “Plasma IGF-I, INSL3, testosterone, inhibin concentrations and scrotal circumferences surrounding puberty in Japanese Black beef bulls with normal and abnormal semen”, Theriogenology., 2018, 114, (1), 54.10. Y. Watanabe, Y. Kazuki, K. Kazuki, M. Ebiki, M. Nakanishi, K. Nakamura, M. Yoshida Yamakawa,H. Hosokawa, T. Ohbayashi, M. Oshimura, and K. Nakashima, “Use of a Human Artificial Chromosome for Delivering Trophic Factors in a Rodent Model of Amyotrophic Lateral Sclerosis”, Mol Ther Nucleic Acids., 2015, 4, (10), e253.11. Y.S. Kim, D.H. Jung, I.S. Lee, B.J. Pyun and J.S. Kim, “Osteomeles schwerinae extracts inhibits the binding to receptors of advanced glycation end products and TGF-β1 expression in mesangial cells under diabetic conditions”, Phytomedicine., 2016, 23, (4), 388.

Sandwich ELISA

Fig. 2 Sandwich ELISA of CAT (chloramphenicol acetyl transferase) assay.

Plate: 2 μg/ml anti-CAT antibody (rabbit anti sera)-coated high binding plateCAT: 0-400 x 10-3units/ml PBSTPeroxidase-conjugated anti-CAT antibody: Prepared by Peroxidase Labeling Kit-NH2.1μg/ml PBST+blocking reagentSubstrate: TMB peroxidase substrate

Western blot

Fig. 3 Western blot using peroxidase-labeled monoclonal antibody to SIV p24 Gag(2F12).

SIV P55 and molecular weight markers were analyzed in blot 1, 2, and 3.Blot 1: conjugate prepared using Peroxidase Labeling Kit-NH2Blot 2: conjugate prepared using Peroxidase Labeling Kit-SHBlot 3: primary antibody and peroxidase-conjugated secondary antibody (commercially available).

The western blotting using peroxidase-labeled primary antibody gives abetter result than using peroxidase-labeled secondary antibody. In most cases, the sensitivity of the conjugate prepared with Peroxidase/ Alkaline phosphatase Labeling Kit-SH is higher than Labeling Kit-NH2 due to the site specific conjugation on the antibody.

Can I use this kit for Fab or Fab Elabeling?

Yes, you can label Fab or Fab Eusing this kit. The recovery of the conjugate should be over 80%.

Can I use this kit for other proteins?

Yes, if the molecular weight is greater than 50,000 or less than 5,000 and it has a reactive primary or secondary amino group. If the molecular weight is higher than 50,000, follow the labeling protocol for IgG and use 0.5-1 nmol of sample protein for LK11-10.If the molecular weight is less than 5,000, follow the labeling protocol for small molecules. If the molecular weight is higher than 5,000 but lower than 50,000, contact our customer service at info@dojindo.com or 1-877-987-2667 for more information.

Can I use this kit to label an oligonucleotide or oligopeptide?

Yes, if the molecular weight is less than 5,000 and it has a reactive primary or secondary amino group. Follow the labeling protocol for small molecules.

What is the minimum amount of IgG that can be labeled with LK11-10?

The minimum amount is 50 μg. There is no significant difference in sensitivity and background between 50 μg and 200 μg of IgG.Though 10 μg IgG can still be labeled using this kit, the background will be higher.

How many peroxidase molecules per IgG are introduced?

The average number of peroxidase molecule per IgG is 1 to 3.

Does unconjugated NH2-reactive peroxidase still have an activated ester after the labeling reaction to IgG?

No. It is completely hydrolyzed during the reaction.

Does NH2-reactive peroxidase form an oligomer during the labeling reaction?

No. Since all amino groups of NH2-reactive peroxidase are blocked, no oligomerization is possible.

Do I have to use Storage buffer included with the kit?

No, you do not have to use Storage buffer from the kit. You can choose any kind of buffer appropriate for your experiment.However, the Storage buffer helps to increase the stability of the peroxidase conjugate.

Does Storage buffer contain animal products or polymers?

No, Storage buffer does not contain any animal products, polymers, or heavy metal ions.

Dojindo,Sulfo-HMCS/50/S026,杂双功能交联剂具有活化的酯和马来酰亚胺反应基团

杂双功能交联剂具有活化的酯和马来酰亚胺反应基团。 这些官能团分别与蛋白质的胺和巯基反应。 酶标记的半抗原是使用异双功能交联剂(例如 EMCS 或 GMBS)制备的。 交联反应需要中性 pH 值和温和的温度,因为在交联反应中需要保持酶活性和抗体滴度。 可使用具有 3、5、7 或 10 个线性碳链的异双功能交联剂。 这些线性脂肪链充当两个反应位点与其水溶性试剂之间的间隔物。 在更宽的 pH 范围内,它们比芳香族交联剂(例如 succinimidyl-4-N-maleimidobenzoate)更稳定。

Conjugation of Macromolecules with Hetero-Bifunctional Cross-Linking Reagent

Hetero-bifunctional Reagents

Product Name Code Length (Å)
Sulfo-EMCS S024 9.4
Sulfo-GMBS S025 6.9
Sulfo-HMCS S026 13.0
Sulfo-KMUS S250 16.7
Sulfo-SMCC S330 8.0
1. J. V. Staros, N-Hydroxysulfosuccinimide Active Esters:Bis(N-hydroxysulfosuccinimide) Esters of Two Dicarboxylic acids Are Hydrophilic, Membraneimpermeant, Protein Cross-linkers, Biochemistry, 1982, 21, 3950.2. P. S. R. Anjaneyulu, James V. Staros, Reactions of N-Hydroxysulfosuccinimide Active Esters, Int. J. Peptide Protein Res., 1987, 30, 117.3. Y. Fukami, K. Sato, K. Ikeda, K. Kamisango, K. Koizumi and T. Matsuno, Evidence for Autoinhibitory Regulation of the c-src Gene Product a Possible Interaction Between the Src Homology 2 Domain and Autophosphorylation Site, J. Biol. Chem., 1993, 268, 1132. 

Dojindo,EMCS/100/E018,杂双功能交联剂具有活化的酯和马来酰亚胺反应基团

杂双功能交联剂具有活化的酯和马来酰亚胺反应基团。 这些官能团分别与蛋白质的胺和巯基反应。 酶标记的半抗原是使用异双功能交联剂(例如 EMCS 或 GMBS)制备的。 交联反应需要中性 pH 值和温和的温度,因为在交联反应中需要保持酶活性和抗体滴度。 可使用具有 3、5、7 或 10 个线性碳链的异双功能交联剂。 这些线性脂肪链充当两个反应位点与其水溶性试剂之间的间隔物。 在更宽的 pH 范围内,它们比芳香族交联剂(例如 succinimidyl-4-N-maleimidobenzoate)更稳定。

Conjugation of Macromolecules with Hetero-Bifunctional Cross-Linking Reagent

Hetero-bifunctional Reagents

Product Name Code Length (Å) Solvent
EMCS E018 9.4 DMSO
GMBS G005 6.9 Chloroform, DMF
HMCS H257 13.0 Acetonitrile
KMUS K214 16.7 Acetonitrile, Methyl alcohol

 

1. S. Yoshitake, Y. Yamada, E. Ishikawa and R. Masseyeff, Conjugation of Glucose Oxidase from Aspergillus Niger and Rabbit Antibodies Using N-Hydroxysuccinimide Ester of N-(4-Carboxycyclohexylmethyl)-Maleimide, Eur. J. Biochem., 1979, 101, 395.2. T. Kitagawa, T. Shimozono, T. Aikawa, T. Yoshida and H. Nishimura, Preparation and Characterization of Hetero-bifunctional Cross-linking Reagents for Protein Modifications, Chem. Pharm. Bull., 1981, 29, 1130.3. S. Yoshitake, M. Imagawa, E. Ishikawa, Y. Niitsu, I. Urushizaki, M. Nishimura, R. Kanazawa, H. Kurosaki, S. Tachibana, N. Nakazawa and H. Ogawa, Mild and Efficient Conjugation of Rabbit Fab Eand Horseradish Peroxidase Using a Maleimide Compound and Its Use for Enzyme Immunoassay, J. Biochem., 1982, 92, 1413.4. E. Ishikawa, M. Imagawa, S. Hashida, S. Yoshitake, Y. Hamaguchi and T. Ueno, Enzyme-Labelling of Antibodies and Their Fragments for Enzyme Immunoassay and Immunohistochemical Staining, J. Immunol., 1983, 4, 209.5. I. Weeks, A. K. Campbell and J. S. Woodhead, Two-site Immunochemiluminometric Assay for Human α1-Fetoprotein, Clin. Chem., 1983, 29, 1480.6. S. Hashida, M. Imagawa, S. Inoue, K. Ruan and E. Ishikawa, More Useful Maleimide Compounds for the Conjugation of Fab Eto Horseradish Peroxidase through Thiol Groups in the Hinge, J. Appl. Biochem., 1984, 6, 56.7. S. Inoue, M. Imagawa, S. Hashida, K. Ruan and E. Ishikawa, A Small Scale Preparation of Affinity-Purified Rabbit Fab EHorseradish Peroxidase Conjugate for Enzyme Immunoassay, Anal. lett., 1984, 17, 229.8. M. Koizumi, K. Endo, M. Kunimatsu, H. Sakahara, T. Nakashima, Y. Kawamura, Y. Watanabe, T. Saga, J. Konishi, T. Yamamura, S. Hosoi, S. Toyama, Y. Arano and A. Yokoyama, Ga-Labeled Antibodies for Immunoscintigraphy and Evalution of Tumor Targeting of Drug-Antibody Conjugatesin Mice, Cancer Res., 1988, 48, 1189.9. T. Kohno and E. Ishikawa, Novel Enzyme Immunoassay(Immune Complex Transfer Enzyme Immunoassay) for Anti-insulin IgG in Guinea Pig Serum, Anal. lett., 1988, 21, 1019.

Dojindo,Biotin-AC5 Sulfo-OSu/10/B320,抗生物素蛋白-生物素系统

Product Description of Amine-Reactive Biotins
抗生物素蛋白-生物素系统在免疫学和组织化学中有许多应用。抗生物素蛋白和生物素之间的相互作用非常强,解离常数约为 10-15 M。生物素通常添加到一抗或二抗中,例如抗 IgG 和抗 IgM。在用生物素标记的抗体制备抗原-抗体复合物后,使用酶或荧光素标记的抗生物素蛋白或链霉抗生物素蛋白对抗原进行比色或荧光检测。琥珀酰亚胺酯生物素在 pH 7-9 下与伯胺和仲胺(例如氨基酸和蛋白质)反应。琥珀酰亚胺酯与游离胺基反应生成稳定的酰胺键。琥珀酰亚胺基生物素试剂必须溶解在 DMSO、DMF 或酒精中。用 DMSO 制备的储备溶液在 -20ºC 下可稳定数月。磺基琥珀酰亚胺生物素试剂可溶于水,因此无需使用 DMF 或 DMSO 等有机溶剂。使用具有较长间隔物的生物素(如 Biotin-(AC5)2-OSu 或 Biotin-(AC5)2-Sulfo-OSu)制备的 IgG 具有更好的信噪比。较长的间隔使链霉亲和素或抗生物素 IgG 能够在没有结构抑制的情况下识别生物素。因此,Biotin-(AC5)2-OSu 被用作 Biotin Labeling Kit-NH2 中的生物素标记剂。

Labeling Procedure for IgG1. Prepare 10 mM of the biotin labeling reagent using DMSO.2. Prepare 100 μl of 1 mg per ml IgG buffer solution (pH 7.5-8.5) that does not contain any large molecules with amine compounds.3. Add 1-5ml biotin labeling reagent DMSO solution to the IgG buffer solution and incubate at 37ºC for 1 hour.4. Remove excess biotin labeling reagent using gel filtration or dialysis.5. Prepare solutions for further experiment using an appropriate buffer such as PBST (0.05% Tween 20/PBS).

1. J. Wormmeester, F. Stiekema and C. Groot, Immunoselective Cell Separation, Methods Enzymol., 1990, 184, 314.2. J. J. Leary, D. J. Brigati and D. C. Ward, Rapid and Sensitive Colorimetric Method for Visualizing Biotin-labeled DNA Probes Hybridized to DNA or RNA Immobilized on Nitrocellulose: Bio-blots, Proc. Batl. Acad. Sci. USA, 1983, 80, 4045.3. W. T. Lee and D. H. Conrad, The Murine Lymphocyte Receptor for IgE. II. Characterization of the Multivalent Nature of the B Lymphocyte Receptor for IgE, J. Exp. Med., 1984, 159, 1790.4. D. R. Gretch, M. Suter and M. F. Stinski, The use of Biotinylated Monoclonal Antibodies and Streptavidin Affinity Chromatography to Isolate Herpesvirus Hydrophobic Proteins or Glycoproteins, Anal. Biochem., 1987, 163, 270 .5. M. Shimkus, J. Levy and T.Herman, A Chemically Cleavable Biotinylated Nucleotide: Usefulness in the Recovery of Protein-DNA Complexes from Avidin Affinity Columns, Proc. Natl. Acad. Sci. USA, 1985, 82, 2593.6. W. J. LaRochelle and S. C. Froehner, Immunochemical Detection of Proteins Biotinylated on Nitrocellulose Replicas, J. Immunol. Methods, 1986, 92, 65.7. P. S. Anjaneyulu and J. V. Staros, Reactions of N-hydroxysulfosuccinimide Active Esters, Int. J. Pep. Protein Res., 1987, 30, 117.8. H. M. Ingalls, C. M. Goodloe-Holland and E. J. Luna, Junctional Plasma Membrane Domains Isolated from Aggregating Dictyostelium Discoideum Amebae, Proc. Natl. Acad. Sci. USA, 1986, 83, 4779.9. J. L. Guesdon, T. Ternynck and S. Avrameas, The Use of Avidin-biotin Interaction in Immunoenzymatic Techniques, J. Histochem, Cytochem, 1979, 27, 1131.

Dojindo,Biotin-HPDP/50/B573,生物素-HPDP含有吡啶基二硫基的生物素分子

生物素-HPDP 是一种含有吡啶基二硫基的生物素分子。 Biotin-HPDP可以将生物素引入到含有SH基团的分子中。 吡啶基二硫基也可以很容易地被还原剂还原,与这类蛋白质的SH基团发生交换反应是可能的。 与 Biotin-SS-Sulfo-OSu 一样,通过还原操作的接头位点具有可切割的特性。但是,由于它与目标蛋白质的 SH 基团反应,因此反应位点可以在还原后返回到源自原始蛋白质的 SH 基团。 二硫基。 在涂有抗生物素蛋白或链霉抗生物素蛋白的柱上使用生物素-HPDP标记分子后,可以通过还原操作裂解连接位点来回收分子。

1. A.Janshoff, K-P. S. Dancil, C. Steinem, D. P.Greiner, V. S.-Y.Lin, C. Gurtner, K.Motesharei, M. J. Sailor and G. M. R. Ghadiri, “Macroporous p-Type SiliconFabry-Perot Layers. Fabrication, Characterization, and Applications inBiosensing”, J. Am. Chem.Soc., 1998, 120(46), 12108.2. K. K.Caswell, J. N. Wilson, U. H. F. Bunz and C. J. Murphy, “PreferentialEnd-to-end Assembly of Gold Nanorods by Biotin-streptavidin Connectors”, J.Am. Chem.Soc., 2003, 125(46), 13914.3. Z. Siwy, L. Trofin, P. Kohli, L. A.Baker, C. Trautmann and C. R. Martin,”Protein Biosensors Based on Biofunctionalized Conical GoldNanotubes”, J. Am. Chem.Soc., 2005, 127(14), 5000.4. G. Hao, B. Derakhshan, L. Shi, F. Campagne and S. S. Gross, “SNOSID, AProteomic Method for Identification of Cysteine S-nitrosylation Sites inComplex Protein Mixtures”, Proc. Natl. Acad. Sci. U. S. A., 2006,103(4), 1012.5. N. L. Moan, G. Clement, S. L. Maout, F. Tacnet and M. B. Toledano, “TheSaccharomyces Cerevisiae Proteome of Oxidized Protein Thiols: ContrastedFunctions for the Thioredoxin and Glutathione Pathways”, J. Biol. Chem.,2006, 281(15), 10420.6. W. Shu, E. D. Laue and A. A. Seshia, “Investigation ofBiotin-streptavidin Binding Interactions Using Microcantilever Sensors”, Biosens.Bioelectron., 2007, 22, 2003.7. W. Yang, D. D. Vizio, M. Kirchner, H. Steen and M. R. Freeman,”Proteome Scale Characterization of Human S-acylated Proteins inLipid Raft-enriched and Non-raft Membranes”, Mol. Cell. Proteomics,2010, 9, 54.

Dojindo,Sulfo-SMCC/50/S330,Sulfo-SMCC 是一种双功能试剂

Sulfo-SMCC 是一种双功能试剂,在分子的不同末端含有一个马来酰亚胺基团和一个 N-羟基琥珀酰亚胺活性酯。 马来酰亚胺基团与SH基团反应,但N-羟基琥珀酰亚胺活性酯与氨基特异性反应。 在pH高于中性时,活性酯基与氨基形成稳定的酰胺键。 另一方面,马来酰亚胺基可以在pH6-7的条件下选择性地与硫醇基反应。 此外,具有环己烷结构的接头部位的磺基-SMCC的特征在于,与在接头部位具有芳香环的同类交联剂相比,马来酰亚胺基团的稳定性提高。 由于导入了具有磺酸基的活性酯基,因此可以在不使用DMSO、DMF等有机溶剂的情况下进行标记反应。

Hetero-bifunctional Reagents

Product Name Code Length (Å)
Sulfo-EMCS S024 9.4
Sulfo-GMBS S025 6.9
Sulfo-HMCS S026 13.0
Sulfo-KMUS S250 16.7
Sulfo-SMCC S330 8.0
1. S. Hashida, M. Imagawa, S. Inoue, K.-H. Ruan and E. Ishikawa, “MoreUseful Maleimide Compounds for the Conjugation of Fab’ to HorseradishPeroxidase Through Thiol Groups in the Hinge”, J. Appl. Biochem., 1984,6, 56.2. O. Prat, E. Lopez and G. Mathis, “Europium(III) Cryptate: A FluorescentLabel for the Detection of DNA Hybrids on Solid Support”, Anal. Biochem.,1991, 195(2), 283.3. O. Siiman, A. Burshteyn, J. A. Maples and J. K. Whitesell,”Tris(3-mercaptopropyl)-N-glycylaminomethane as a New Linker to BridgeAntibody with Metal Particles for Biological Cell Separations”, BioconjugateChem., 2000, 11(4), 549.4. T. P. Thomas, A. K. Patri, A. Myc, M. T. Myaing, J. Y. Ye, T. B. Norris andJ. R. Baker Jr., “In Vitro Targeting of Synthesized Antibody-conjugatedDendrimer Nanoparticles”, Biomacromolecules, 2004, 5(6),2269.5) V. Gauvreau, G. Laroche, “Micropattern Printing of Adhesion, Spreading,and Migration Peptides on Poly(tetrafluoroethylene) Films to PromoteEndothelialization”, Bioconjugate Chem., 2005, 16(5),1088.

Dojindo,MitoPeDPP/1/M466,MitoPeDPP 是一种细胞膜可渗透探针

MitoPeDPP 是一种细胞膜可渗透探针,基于苝的染料。 由于引入了三苯基鏻部分,它特别定位于线粒体。 MitoPeDPP 用于监测铁死亡研究中的脂质过氧化。由于 MitoPeDPP 的激发和发射波长分别为 452 nm 和 470 nm,该探针可用于活细胞中的亲脂性过氧化物成像。 Shioji 等人。 福冈大学化学系

Lipophilic Peroxide Detection in Mitochondria (cell line used: HepG2 cell)

A: MitoPeDPP stained Mitochondria with t-BHP treatmentB: MitoRed stained MitochondriaC: Merged Image (A/B)


Selectivity of MitoPeDPP as a Peroxides Probe Even though MitoPeDPP reacts with various peroxides (H2O2, t-BHP, ONOO-) in homogeneous systems (data is not shown), the MitoPeDPP is specifically-oxidized by t-BHP in mitochondria (A) but not with ROS and RNS (B).

A: MitoPeDPP stained cells with t-BHP treatment (t-BHP) and without (control).B: MitoPeDPP stained cells with ROS or RNS exposure.*As ROS generators, PMA (O2・), NOC7 (NO), and SIN-1 (ONOO) were used in the experiments.*Abbreviationst-BHP: tert-butylhydroperoxidePMA: Phorbol Myristate AcetateNOC7: 1-Hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazineSIN-1: 3-(Morpholinyl)sydnonimine, hydrochloride

Dojindo,SPDP/100/S291,SPDP 是一种异双功能试剂

SPDP 是一种异双功能试剂,可用于桥接两种不同的蛋白质,例如酶和抗体。 SPDP 首先通过其氨基与蛋白质分子反应。 SPDP 将吡啶基二硫化物部分引入蛋白质,然后被 DTT 还原以形成硫醇基团。 然后这些硫醇基团与另一个蛋白质分子形成二硫键,从而产生异二聚体蛋白质。
Structural Formula

Homo-bifunctional Reagents

Product Name Code Length (Å) Solvent
DSP D629 8.5 DMSO, DMF
SPDP S291 4.1 Acetonitrile

1. P. Walden, Z. A. Nagy and J. Klein, Major Histocompatibility Complex-Restricted and Unrestricted Activation of Helper T Cell Lines by Liposome-bound Antigens, J. Mol. Cell. Immunol, 1986, 2, 191.2. R. D. Gordon, W. E. Fieles, D. L. Schotland, R. Hogue-Angeletti and R. L. Barchi, Topographical Localization of the C-terminal Region of the Voltagedependent Sodium Channel from Electrophorus Electricus Using Antibodies Raised Against a Synthetic Peptide, Proc. Natl. Acad. Sci. USA, 1987,84, 308.

Dojindo,GMBS/100/G005,杂双功能交联剂具有活化的酯和马来酰亚胺反应基团

杂双功能交联剂具有活化的酯和马来酰亚胺反应基团。 这些官能团分别与蛋白质的胺和巯基反应。 酶标记的半抗原是使用异双功能交联剂(例如 EMCS 或 GMBS)制备的。 交联反应需要中性 pH 值和温和的温度,因为在交联反应中需要保持酶活性和抗体滴度。 可使用具有 3、5、7 或 10 个线性碳链的异双功能交联剂。 这些线性脂肪链充当两个反应位点与其水溶性试剂之间的间隔物。 在更宽的 pH 范围内,它们比芳香族交联剂(例如 succinimidyl-4-N-maleimidobenzoate)更稳定。

Conjugation of Macromolecules with Hetero-Bifunctional Cross-Linking Reagent

Hetero-bifunctional Reagents

Product Name Code Length (Å) Solvent
EMCS E018 9.4 DMSO
GMBS G005 6.9 Chloroform, DMF
HMCS H257 13.0 Acetonitrile
KMUS K214 16.7 Acetonitrile, Methyl alcohol

 

1. S. Yoshitake, Y. Yamada, E. Ishikawa and Rene Masseyeff, Conjugation of Glucose Oxidase from Aspergillus Niger and Rabbit Antibodies Using N-Hydroxysuccinimide Ester of N-(4-Carboxycyclohexylmethyl)-Maleimide, Eur. J. Biochem., 1979, 101, 395.2. H. Tanimori, T. Kitagawa, T. Tsunoda and R. Tsuchiya, Enzyme Immunoassay of Neocarzinostain Using β-Galactosidase as Label, J. Pharm. Dyn., 1981, 4, 812.3. K. Fujiwara, M. Yasuno and T. Kitagawa, Novel Preparation Method of Immunogen for Hydrophobic Hapten, Enzyme Immunoassay for Daunomycin and Adriamycin, J. Immunol. Methods, 1981, 45, 195.4. T. Miura, H. Kouno and T. Kitagawa, Detection of Residual Penicillin in Milk by Sensitive Enzyme Immunoassay, J. Pharm. Dyn., 1981, 4, 706.5. S. Yoshitake, M. Imagawa, E. Ishikawa, Y. Niitsu, I. Urushizaki, M. Nishiura, R. Kanazawa and H. Ogawa, Mild and Efficient Conjugation of Rabbit Fab Eand Horseradish Peroxidase Using a Maleimide Compound and Its Use for Enzyme Immunoassay, J. Biochem. ,1982, 92, 1413.6. T. Kitagawa, H. Tanimori, K. Yoshida, H. Asada, T. Miura and K. Fujiwara, Studies on Viomycin. XV. Comparative Study on the Specificities of Two Anti-viomycin Antisera by Enzyme Immunoassay, Chem. Pharm. Bull., 1982, 30, 2487.7. T. Kitagawa, T. Kawasaki and H. Munechika, Enzyme Immunoassay of Blasticidin S with High Sensitivity:A New and Convenient Method for Preparation of Immunogenic(Hapten-Protein) Conjugates, J. Biochem.,1982, 92, 585.

Dojindo,Alkaline Phosphatase Labeling Kit-SH/3/LK13,碱性磷酸酶标记试剂盒-SH

碱性磷酸酶标记试剂盒-SH 主要用于制备碱性磷酸酶标记的 IgG 用于酶免疫测定 (EIA) 和制备碱性磷酸酶标记的抗原用于竞争性 EIA。 SH-reactive ALP 是该试剂盒的一个组成部分,可以与蛋白质或其他分子的硫醇基团发生反应(图 1)。 该试剂盒包含标记过程所需的所有试剂,包括还原剂和储存缓冲液。 SH 反应性 ALP 与靶分子形成共价键。 还原剂可以在 IgG 分子中产生游离硫醇基团。 当碱性磷酸酶标记的 IgG 用于 EIA 时,SH 反应性 ALP 的标记效率足以消除标记后的任何纯化过程。 如果标记后需要高纯度偶联物,只需使用亲和柱或凝胶渗透柱即可。 标记小分子时,可以使用该套件中包含的过滤管去除多余的分子。

Precaution♦ The molecular weight of the reduced protein to be labeled with this kit should be greater than 50,000.♦ The molecular weight of the small amine compound to be labeled with this kit should be smaller than 5,000.♦ IgG or alkaline phosphatase-conjugated IgG is always on the membrane of the filtration tube during the labeling process.♦ If the IgG solution contains other proteins with molecular weight larger than 10,000, such as BSA or gelatin, purify the IgG solution prior to labeling alkaline phosphatase with this kit. IgG solution can be purified by IgG Purification Kits (not included in this kit).♦ If the IgG solution contains small insoluble materials, centrifuge the solution and use the supernatant for the labeling.


Peroxidase Labeling Kit-NH2-used for Viral Research (COVID-19 Testing)

Dr. Kyosei et al. developed the ultrasensitive detection of spike proteins of SARS-CoV-2. The SARS-CoV-2 spike proteins were measured by a sandwich ELISA coupled with thio-NAD cycling using alkaline phosphatase, androsterone derivatives, and 3α-hydroxysteroid dehydrogenase (3α-HSD) and its coenzymes (NADH and thio-NAD). The secondary antibody was conjugated to alkaline phosphatase by using Dojindo’s Alkaline Phosphate Labeling Kit-SH.

Y. Kyosei et al., Diagnostics, 2020, 10(8), 594.“Proposal of De Novo Antigen Test for COVID-19: Ultrasensitive Detection of Spike Proteins of SARS-CoV-2”

Sandwich ELISA

Fig. 2 Sandwich ELISA of human TNF-α detection

Plate: 2μg/ml anti-human TNF-antibody (rabbit, polyclonal)-coatedhigh binding platerecombinant human TNF-a: 0-1000 pg/ml PBSTALP-conjugated anti-human TNF-antibody: Prepared by Alkaline phosphatase Labeling Kit-SH .1μg/ml PBST+blocking reagentSubstrate: p-Nitrophenylphosphate, ALP substrate

Can I use this kit for F(ab E2?
Yes, please follow the labeling protocol for IgG. The recovery of the conjugate should be over 80%.
Can I use this kit for other proteins or peptides?
Yes, if the molecular weight of the reduced form is greater than 50,000 or less than 5,000, and it has a reactive SH group or a disulfide group that can be reduced without losing activity. If the molecular weight is greater than 50,000, follow the labeling protocol for IgG and use 0.5-1 nmol of sample protein for LK13-10. If the molecular weight is less than 5,000, follow the labeling protocol for small molecules. If the molecular weight is between 5,000 and 50,000, contact our customer service at info@dojindo.com or 1-877-987-2667 for more information.
Can I use this kit to label oligopeptides or oligonucleotides?
Yes, if the molecular weights of the oligonucleotide or the oligopeptide are less than 5,000 and they have at least one SH group. Follow the labeling protocol for small molecule.
What is the minimum amount of IgG that can be labeled with LK13-10?
The minimum amount is 50 μg. There is no significant difference in sensitivity and background between 50 μg and 200 μg of IgG. However, even 10 μg IgG can be labeled, using 1/5 volume of SH-reactive ALP solution at step 8.
How many alkaline phosphatase molecules per reduced IgG are introduced?
The average number of alkaline phosphatase molecule per reduced IgG is 1 to 2.
Do I have to use a Filtration tube prior to labeling the protein?
If the protein solution does not contain small molecules with reactive SH groups and the concentration of the protein is 10 mg per ml, or about 70 μM, there is no need to use the Filtration tube. Just mix 10 μl of the sample solution with Solution B and add the mixture to a vial of the SH-reactive peroxidase.
Do I have to use Storage buffer included with the kit?
No, you don’t have to use Storage buffer from the kit. You can choose any kind of buffer appropriate for your experiment.
My sample contains small insoluble material. What should I do?
Spin the sample and use the supernatant for labeling.
Does unconjugated SH-reactive ALP still have a reactive maleimide after the labeling reaction to IgG?
No. Nearly 100% of SH-reactive ALP is used for the IgG labeling or the small molecule labeling.
Does Storage buffer contain animal products or polymers?
No, Storage buffer does not contain any animal products , polymers, or heavy metal ions.

Dojindo,KMUS/50/K214,杂双功能交联剂具有活化的酯和马来酰亚胺反应基团

杂双功能交联剂具有活化的酯和马来酰亚胺反应基团。 这些官能团分别与蛋白质的胺和巯基反应。 酶标记的半抗原是使用异双功能交联剂(例如 EMCS 或 GMBS)制备的。 交联反应需要中性 pH 值和温和的温度,因为在交联反应中需要保持酶活性和抗体滴度。 可使用具有 3、5、7 或 10 个线性碳链的异双功能交联剂。 这些线性脂肪链充当两个反应位点与其水溶性试剂之间的间隔物。 在更宽的 pH 范围内,它们比芳香族交联剂(例如 succinimidyl-4-N-maleimidobenzoate)更稳定。

Conjugation of Macromolecules with Hetero-Bifunctional Cross-Linking Reagent

Hetero-bifunctional Reagents

Product Name Code Length (Å) Solvent
EMCS E018 9.4 DMSO
GMBS G005 6.9 Chloroform, DMF
HMCS H257 13.0 Acetonitrile
KMUS K214 16.7 Acetonitrile, Methyl alcohol

 

Dojindo,ExoSparkler 外泌体膜标记试剂盒/Deep/EX01,ExoSparkler Exosome Membrane Labeling Kit

外泌体是细胞外囊泡 (EV) 的一种形式,可能导致癌症的恶性转化和转移。 因此,通过外泌体进行的细胞间通讯引起了科学界的极大兴趣。 为了阐明这种交流,已经使用了基于荧光染料的标记技术。 标记细胞膜的荧光染料通常用于外泌体标记,因为外泌体中的脂质双层是合适的标记目标。 ExoSparkler 系列可用于对纯化的外泌体膜或蛋白质进行染色,从而可以对细胞摄取的标记外泌体进行成像。


ExoSparkler series enables you to observe exosome dynamics more accurately.Commonly used exosomal membrane dye can cause dye aggregation, exhibiting fluorescent spots that are not derived from exosomes. These dyes can also change the functional properties of exosomes while increasing the background imaging.1,2The dyes used in ExoSparkler series (Mem Dye-Green, Red, and Deep Red) do not cause aggregation and have little influence on properties of exosomes, allowing a more accurate observation of exosome dynamics.1) Mehdi Dehghani et al., “Exosome labeling by lipophilic dye PKH26 results in significant increase in vesicle size”.bioRxiv., 2019, doi:10.1101/532028.2) Pužar Dominkuš P et al., “PKH26 labeling of extracellular vesicles: Characterization and cellular internalization of contaminating PKH26 nanoparticles.” Biochim Biophys Acta Biomembr., 2018, doi: 10.1016/j.bbamem.2018.03.013.


ExoSparkler series does not allow extracellular aggregation

Exosomes stained with ExoSparkler’s Mem Dye-Deep Red or an alternative product (green or red) were added to each well containing HeLa cells. The labeled exosomes taken into HeLa cells were observed by fluorescent microscopy. As a result, extracellular fluorescent spots suspected of dye aggregations were seen in each well containing the exosomes stained with the alternative product (green or red).

Experimental conditionsExosomes were purified by ultracentrifugation (10μg exosome protein) and stained with each dye. Labeled exosomes were added to HeLa cells (1.25×104 cells), and the cells were incubated for 24 hours. Cells were washed, and immunofluorescence images showing labeled exosomes were observed.Detection conditionsMem Dye-Deep Red(Purple): Ex 640nm/Em 640-760nmAlternative Product “P” (Green): Ex 561nm/Em 560-620nmAlternative Product “P” (Red): Ex 640nm/Em 650-700nm

Mem Dye-Deep Red and Product “P” (Green and Red) in aqueous solution were analyzed by NTA (nanoparticle tracking analysis) to investigate the generation of aggregates. No aggregation was observed in the experiments with Mem Dyes, although Product “P” (Green and Red) produced dye-to-dye aggregates (100–500 nm size).Instrument: LM10-HSBFT 14 (Nanosight)

Change the particle size of Mem Dye-solution and Product “P” solution

In Mem Dye-Green, Red, the aggregation of the dye was not confirmed as in Mem Dye-Deep Red.


Mem Dyes have little effect on exosome propertiesNTA (nanoparticle tracking analysis) and zeta potential were measured to determine the changes in exosomes of dye-stained with Mem Dye-Deep Red or Product “P” (green or red) or unstained exosomes.As a result, the Mem-Dye series (green, red, deep red) had little effect on exosome properties.

Effect of the dyes on the particle size of the exosomesExosomes were stained with Mem Dye-series (green, red, deep red) and Product “P” (green and red) at a dye concentration of 10 μmol/L in DMSO, the NTA (nanoparticle tracking analysis) of the stained exosomes (as 10 µg protein) was measured.As a result, Mem Dyes-series did not change number and particle size of the exosomes (bottom left). Conversely, the Product “P” stained exosomes showed the significant changes of particle size and population of the exosomes (bottom right).Instrument: LM10-HSBFT 14 (Nanosight)

Effect of the dyes on the zeta potentials of the exosomesExosomes were stained with Mem Dye-series (green, red, crimson) and Product “P” (green and red) at a dye concentration of 10 μmol/L in DMSO, the zeta potentials of the stained exosomes (as 10 µg protein) was measured.As a result, product “P”-stained exosomes have lower zeta potential than Mem Dye-stained.Instrument: Zetasizer Nano ZSP (Malvern Panalytical)

Zeta potentials comparison of dye-stained (Mem-Dye/Product “P”) or unstained exosomes

References) Takashi Shimomura et al., “New Lipophilic Fluorescent Dyes for Exosome Labeling: Monitoring of Cellular Uptake of Exosomes”.bioRxiv., 2020, doi:10.1101/2020.02.02.931295.


Our ExoSparkler Exosome Membrane Labelling Kits provide everything from fluorescence labeling to purificationExoSparkler series contains filtration tubes available for the removal of dyes unreacted after fluorescence labeling, as well as an optimized protocol for labeling exosomes. Our ExoSparkler series makes it possible to prepare fluorescence labeling of exosomes using the simple procedure.

Comparison of purification methods (removal of unlabeled dyes)The filtration tubes used to remove unlabeled dyes in this kit can purify exosomes at a higher recovery rate than gel filtration methods.

For the effectiveness of purification using filtration tubes, please see Q&A.(The filter is colored in the purification after the labeling, Have unlabeled dyes been removed?)


Observe the time-dependent changes in exosomes localization

<Experimental conditions>Exosomes purified by ultracentrifugation (10 µg as protein amount) were stained with Mem Dye-Deep Red (Exosome Membrane Fluorescence Labeling Kit) and added to HeLa cells (1.25×104 cells) stained with lysosome staining dye. The fluorescence images were observed after 1 h and 4 h incubation.As a result, it was confirmed that the fluorescence puncta (purple) of Mem Dye-Deep Red overlapped with the localization of lysosomes (green) over time (white), and that the localization of exosomes changed in a time-dependent manner.

 

<Detection Conditions>Mem Dye-Deep Red (Purple): Ex 640 nm/Em 640-760 nmLysosome staining dye: Ex 488 nm/Em 490-540 nm

 


Visualization of EVs uptake via endocytic pathway

 

Mem Dye-labeled EVs are internalized via endocytosis:HeLa cells were incubated with 10 μmol/L ECGreen (Code: E296) for 30 min. Then, Mem Dye-Deep Red labeled EVs (quantified as 10 µg of protein) were added to HeLa cells. After 30 or 120 min incubation, the cells were washed and observed under a fluorescence microscope (Scale Bar: 10 µm).

 


ExoSparkler series product comparison

Experimental conditionsExosomes were purified by ultracentrifugation (10 μg exosome protein) and stained with each dye. Labeled exosomes were added to HeLa cells (1.25×104 cells), and the cells were incubated for 24 hours. Cells were washed, and immunofluorescence images showing labeled exosomes were observed.Detection conditionsGreen: Ex 488nm/Em 490-540nmRed: Ex 561nm/Em 570-640nmDeep Red: Ex 640nm/Em 640-760nm

Are there recommended purification methods for exosome?
We recommended the exosomes prepared by ultracentrifuge, moreover we had evaluated the exosomes prepared by immunoprecipitation.Also, exosome prepared by polymer-based precipitation cannot be applied with these kits.
Some dye remains on the filter after purification. Have unlabeled dyes been removed?

Unlabeled dye is likely to be retained inside the filter, but we have confirmed that the unlabeled dye is not remaining on top of the filter. Please refer to the following experiment:<Experimental condition>① We stained the 10 µg exosomes (as protein amount) purified by ultracentrifugation.② We also prepared only using buffer as a control3. The recovered solution is added to HeLa cells (1.25 x 104 cells), and the fluorescence image was observed 4 hours later.As a result, it was confirmed that no bright fluorescent particles (unlabled dyes) were observed in the cells using the recovered solution with the only buffer.① Exosome + Buffer

② Only Buffer

Fluorescent images at 4 h incubation

Detection conditionsGreen:Ex 488 nm / Em 490 – 540 nmRed :Ex 561 nm / Em 570 – 640 nmDeep Red:Ex 640 nm / Em 640 – 760 nm

Can I store the exosomes after it has been stained?

We can not recommend to store the exosomes after it has been stained.Please use the stained exosomes as soon as possible.

Which media have been used in exosome uptake experiments?
We had evaluated the exosome uptake experiments using MEM (Minimum Essential Medium) and DMEM (Dulbecco’s Modified Eagle’s Medium). We can not recommend to use the serum-free medium because this kit has been optimized to observe in serum-containing medium.

Dojindo,生物素-(AC5)2磺基OSu/10/B321

Product Description of Amine-Reactive Biotins
抗生物素蛋白-生物素系统在免疫学和组织化学中有许多应用。抗生物素蛋白和生物素之间的相互作用非常强,解离常数约为 10-15 M。生物素通常添加到一抗或二抗中,例如抗 IgG 和抗 IgM。在用生物素标记的抗体制备抗原-抗体复合物后,使用酶或荧光素标记的抗生物素蛋白或链霉抗生物素蛋白对抗原进行比色或荧光检测。琥珀酰亚胺酯生物素在 pH 7-9 下与伯胺和仲胺(例如氨基酸和蛋白质)反应。琥珀酰亚胺酯与游离胺基反应生成稳定的酰胺键。琥珀酰亚胺基生物素试剂必须溶解在 DMSO、DMF 或酒精中。用 DMSO 制备的储备溶液在 -20ºC 下可稳定数月。磺基琥珀酰亚胺生物素试剂可溶于水,因此无需使用 DMF 或 DMSO 等有机溶剂。使用具有较长间隔物的生物素(如 Biotin-(AC5)2-OSu 或 Biotin-(AC5)2-Sulfo-OSu)制备的 IgG 具有更好的信噪比。较长的间隔使链霉亲和素或抗生物素 IgG 能够在没有结构抑制的情况下识别生物素。因此,Biotin-(AC5)2-OSu 被用作 Biotin Labeling Kit-NH2 中的生物素标记剂。

Labeling Procedure for IgG1. Prepare 10 mM of the biotin labeling reagent using DMSO.2. Prepare 100 μl of 1 mg per ml IgG buffer solution (pH 7.5-8.5) that does not contain any large molecules with amine compounds.3. Add 1-5ml biotin labeling reagent DMSO solution to the IgG buffer solution and incubate at 37ºC for 1 hour.4. Remove excess biotin labeling reagent using gel filtration or dialysis.5. Prepare solutions for further experiment using an appropriate buffer such as PBST (0.05% Tween 20/PBS).

1. J. Wormmeester, F. Stiekema and C. Groot, Immunoselective Cell Separation, Methods Enzymol., 1990, 184, 314.2. J. J. Leary, D. J. Brigati and D. C. Ward, Rapid and Sensitive Colorimetric Method for Visualizing Biotin-labeled DNA Probes Hybridized to DNA or RNA Immobilized on Nitrocellulose: Bio-blots, Proc. Batl. Acad. Sci. USA, 1983, 80, 4045.3. W. T. Lee and D. H. Conrad, The Murine Lymphocyte Receptor for IgE. II. Characterization of the Multivalent Nature of the B Lymphocyte Receptor for IgE, J. Exp. Med., 1984, 159, 1790.4. D. R. Gretch, M. Suter and M. F. Stinski, The use of Biotinylated Monoclonal Antibodies and Streptavidin Affinity Chromatography to Isolate Herpesvirus Hydrophobic Proteins or Glycoproteins, Anal. Biochem., 1987, 163, 270 .5. M. Shimkus, J. Levy and T.Herman, A Chemically Cleavable Biotinylated Nucleotide: Usefulness in the Recovery of Protein-DNA Complexes from Avidin Affinity Columns, Proc. Natl. Acad. Sci. USA, 1985, 82, 2593.6. W. J. LaRochelle and S. C. Froehner, Immunochemical Detection of Proteins Biotinylated on Nitrocellulose Replicas, J. Immunol. Methods, 1986, 92, 65.7. P. S. Anjaneyulu and J. V. Staros, Reactions of N-hydroxysulfosuccinimide Active Esters, Int. J. Pep. Protein Res., 1987, 30, 117. 8. H. M. Ingalls, C. M. Goodloe-Holland and E. J. Luna, Junctional Plasma Membrane Domains Isolated from Aggregating Dictyostelium Discoideum Amebae, Proc. Natl. Acad. Sci. USA, 1986, 83, 4779.9. J. L. Guesdon, T. Ternynck and S. Avrameas, The Use of Avidin-biotin Interaction in Immunoenzymatic Techniques, J. Histochem, Cytochem, 1979, 27, 1131.

Dojindo,异硫氰酸苄基EDTA/10/M030

Product Description of Amine-Reactive Biotins
Isothiocyanobenzyl-EDTA 通过其胺基将 EDTA 部分添加到蛋白质中。 然后可以用重金属离子和放射性金属(如 111In 和 99Tc)标记 EDTA 标记的蛋白质,并用于免疫成像。

Chemical Structure

1. C. F. Meares and T. G. Wensel, Metal Chelates as Probes of Biological Systems, Acc. Chem. Res.,1984, 17, 202.2. S. V. Deshpande, R. Subramanian, M. J. McCall, S. J. Denardo, G. L. Denardo and C. F. Meares, Metabolism of Indium Chelates Attached to Monoclonal Antibody: Minimal Transchelation of Indium form Benzyl-EDTA Chelate in vivo, J. Nucl. Med., 1990, 31, 218.3. S. Mirzadeh, M. W. Brechbiel and R. W. Atcher, Otto A. Gansow Radiometal Labeling of Immunoproteins: Covalent Linkage of 2-(4-Isothiocyanatobenzyl) diethylenetriaminepentaacetic acid Ligands to Immunoglobulin, Bioconjugate Chem., 1990, 1, 59. 

Dojindo,Biotin-SS-Sulfo-OSu/100/B572,Biotin-SS-Sulfo-Osu有N-羟基琥珀酰亚胺活性酯基团生物素分子

Biotin-SS-Sulfo-Osu是一种含有N-羟基琥珀酰亚胺活性酯基团的生物素分子,可用于将生物素引入抗体、酶等蛋白质的氨基基团。 与仅具有烷基链接头的生物素化试剂、Biotin-AC5Sulfo-OSu 或 Biotin Sulfo-OSu 不同,接头位点的切割是可能的,但是引入接头位点的二硫基团很容易被还原剂还原。 在涂有抗生物素蛋白或链霉抗生物素蛋白的柱上使用 Biotin-SS-Sulfo-OSu 标记分子后,可以通过还原操作切割接头位点来回收分子。

1. M. Shimkus, J. Levy and T.Herman, “A Chemically Cleavable Biotinylated Nucleotide: Usefulness in theRecovery of Protein-DNA complexes From Avidin Affinity Columns”, Proc.Natl. Acad. Sci. USA, 1985, 82, 2593.2. G. Nikov, V. Bhat, J. S. Wishnok and S. R. Tannenbaum, “Analysis ofNitrated Proteins by Nitrotyrosine-specific Affinity Probes and MassSpectrometry”, Anal. Biochem., 2003, 320(2), 214.3. S. B. Scheurer, C. Roesli, D. Neri and G. Elia, “A Comparison ofDifferent Biotinylation Reagents, Tryptic Digestion Procedures, and MassSpectrometric Techniques for 2-D peptide Mapping of Membrane Proteins”, Proteomics,2005, 5, 3035.4. J. C. Timmer, M. Enoksson, E. Wildfang, W. ZHU, Y. Igarashi, J-B. Denault,Y. Ma, B. Dummitt, Y-H. Chang, A. E. Mast, A. Eroshkin, J. W. Smith, W. A. Taoand G. S. Salvesen, “Profiling Constitutive Proteolytic events in vivo”,Biochem. J., 2007, 407, 41.5. S. J. Lee, K-H. Kim, J. S. Park, J. W. Jung, Y. H. Kim, S. K. Kim, W-S. Kim,H-G. Goh, S-H Kim, J-S. Yoo, D-W Kim and K. P. Kim, “Comparative Analysisof Cell Surface Proteins in Chronic and Acute Leukemia Cell Lines”, Biochem.Biophys. Res. Commun., 2007, 357, 620.

Dojindo,Ab-10 Rapid Peroxidase Labeling Kit/3/LK33,Ab-10 快速过氧化物酶标记试剂盒

Ab-10 快速过氧化物酶标记试剂盒用于在 30 分钟内将过氧化物酶标记为 10 µg 抗体。 试剂盒中的标记剂具有琥珀酰亚胺酯基团,无需任何活化过程即可轻松与靶抗体的氨基形成共价键。 该试剂盒包含抗体标记所需的所有试剂。

IgG Labeling Reaction of NH2-reactive Peroxidase

Labeing Procedure

Precaution♦ Use 0.5-1 mg/ml of antibody solution for labeling. If the antibody concentration is higher than 1mg/ml, dilute the antibody solution with PBS.♦ If the sample solution contains small insoluble materials, centrifuge the solution, and use the supernatant for the labeling.♦ The microtube in this kit contain solutions. Since there is a possibility that the droplets might be attached to the inside walls or caps, please centrifuge to drop the droplets prior to opening.♦ Some additives in antibody solution may interfere with the labeling if the concentration is too high. The maximum compatible concentrations of such additives are indicated on Table 1.♦ After a Reactive Fluorescent is removed from the seal bag, keep the unused Reactive Fluorescein in the bag, seal tightly and store at -20ºC.Store the other components at 0-5ºC.♦ Since reactive reagent binds to an amino group in antibody, there is a possibility that the labeled antibody loses the antigen recognition ability (Table 2).

Table. 1 Compatible concentrations of the additives

Table. 2 Non-Compatible Antibody

 

Fig. 3 Microscope Image of Mitochondria in Hela CellsPeroxidase were to anti-mitochondria antibody using Ab-10 Rapid Peroxidase Labeling Kit (code:LK33)

Dojindo,Biotin-PEAC5-maleimide/10/B299,抗生物素蛋白-生物素系统

Product Description of Amine-Reactive Biotins
抗生物素蛋白-生物素系统在免疫学和组织化学中有许多应用。抗生物素蛋白和生物素之间的相互作用非常强,解离常数约为 10-15 M。生物素通常添加到抗 IgG 和抗 IgM 等一抗或二抗中。在用生物素标记的抗体制备抗原-抗体复合物后,使用酶或荧光团标记的抗生物素蛋白或链霉抗生物素蛋白进行抗原的比色或荧光检测。马来酰亚胺生物素在 pH 7-7.5 下与硫醇化合物反应,例如具有巯基的蛋白质或肽。马来酰亚胺与巯基反应生成硫醚键。虽然其他马来酰亚胺生物素试剂必须溶解在 DMSO、DMF 或酒精中,但生物素-PE-马来酰亚胺可以在 pH 7.4 的 PBS 中溶解,以制备 2 mM 溶液,而无需使用有机溶剂。马来酰亚胺与巯基的反应性高于溴乙酰胺,因此马来酰亚胺生物素所需浓度远低于溴乙酰胺生物素。 Biotin-PE-maleimide 和 Biotin-PEAC5-maleimide 在 DMSO 中的储备溶液在 -20oC 下可稳定保存一年。

Structural Formula:

Labeling Procedure for Reduced IgG1. Prepare 10 mM of the biotin labeling reagent using DMSO.2. Prepare 100 μl of 1 mg per ml reduced IgG/ml buffer solution which does not contain any large molecules with SH groups. Reduced IgG can be prepared by TCEP (tricarboxyethylphosphine), DTT or 2-mercaptoethylamine.3. Add 1-5 μl of biotin labeling reagent DMSO solution to the IgG buffer solution and incubate at 37 oC for 1 hour.4. Remove excess biotin labeling reagent using a gel column or a Filtration tube.5. Prepare solutions for further experiment using an appropriate buffer such as PBST (0.05% Tween 20/PBS).

E. Muneyuki, et al., Biophys. J., 92, 1806 (2007).

Dojindo,Biotin OSu/10/B304,抗生物素蛋白-生物素系统

Product Description of Amine-Reactive Biotins
抗生物素蛋白-生物素系统在免疫学和组织化学中有许多应用。抗生物素蛋白和生物素之间的相互作用非常强,解离常数约为 10-15 M。生物素通常添加到一抗或二抗中,例如抗 IgG 和抗 IgM。在用生物素标记的抗体制备抗原-抗体复合物后,使用酶或荧光素标记的抗生物素蛋白或链霉抗生物素蛋白对抗原进行比色或荧光检测。琥珀酰亚胺酯生物素在 pH 7-9 下与伯胺和仲胺(例如氨基酸和蛋白质)反应。琥珀酰亚胺酯与游离胺基反应生成稳定的酰胺键。琥珀酰亚胺基生物素试剂必须溶解在 DMSO、DMF 或酒精中。用 DMSO 制备的储备溶液在 -20ºC 下可稳定数月。磺基琥珀酰亚胺生物素试剂可溶于水,因此无需使用 DMF 或 DMSO 等有机溶剂。使用具有较长间隔物的生物素(如 Biotin-(AC5)2-OSu 或 Biotin-(AC5)2-Sulfo-OSu)制备的 IgG 具有更好的信噪比。较长的间隔使链霉亲和素或抗生物素 IgG 能够在没有结构抑制的情况下识别生物素。因此,Biotin-(AC5)2-OSu 被用作 Biotin Labeling Kit-NH2 中的生物素标记剂。

Reaction Scheme

Labeling Procedure for IgG1. Prepare 10 mM of the biotin labeling reagent using DMSO.2. Prepare 100 μl of 1 mg per ml IgG buffer solution (pH 7.5-8.5) that does not contain any large molecules with amine compounds.3. Add 1-5ml biotin labeling reagent DMSO solution to the IgG buffer solution and incubate at 37ºC for 1 hour.4. Remove excess biotin labeling reagent using gel filtration or dialysis.5. Prepare solutions for further experiment using an appropriate buffer such as PBST (0.05% Tween 20/PBS).

1. P. Kongtawelert and P. Ghosh, A New Sandwich-ELISA Method for the Determination of Keratan Sulphate Peptides in Biological Fluids Employing a Monoclonal Antibody and Labelled Avidin Biotin Technique., Clin. Chem. Acta,, 1990, 195, 17 .2. G. Paganelli, S. Pervez, A. G. Siccardi, G. Rowlinson, G. Deleide, F. Chiolerio, M. Malcovati, G. A. Scassllati and A. A. Epenetos, Intraperitoneal Radio-localization of Tumors Pre-targeted by Biotinylated Monoclonal Antibodies, Int. J. Cancer, 1990, 45, 1184.3. C. Wagener, U. Kruger and J. E. Shively, Selective Precipitation of Biotin-labeled Antigens or Monoclonal Antibodies by Avidin for Determining Epitope Specificities and Affinities in Solution-phase Assays, Methods Enzymol., 1990, 184, 518 .4. D. M. Boorsma, J. Van Bommel and E. M. Vander Raaij-Helmer, Simultaneous Immunoenzyme Double Labelling Using Two Different Enzymes Linked Directly to Monoclonal Antibodies or with Biotin-avidin, J. Microscopy, 1986, 143, 197.5. A. Komura, T. Tokuhisa, T. Nakagawa, A. Sasase, M. chihashi, S. Ferrone and Y.Mishima, Specific Killing of Human Melanoma Cells with an Efficient 10B-compound on Monoclonal Antibodies, Pigment Cell Res., 1989, 2, 259.6. R. Rappuoli, P. Leoncini, P. Tarli and P. Neri, Competitive Enzyme Immunoassay for Human Chorionic Somatomammotropin Using the Avidin-biotin System, Anal. Biochem., 1981, 118, 168.

Dojindo,Biotin-(AC5)2-OSu/10/B306,抗生物素蛋白-生物素系统

Product Description of Amine-Reactive Biotins
抗生物素蛋白-生物素系统在免疫学和组织化学中有许多应用。抗生物素蛋白和生物素之间的相互作用非常强,解离常数约为 10-15 M。生物素通常添加到一抗或二抗中,例如抗 IgG 和抗 IgM。在用生物素标记的抗体制备抗原-抗体复合物后,使用酶或荧光素标记的抗生物素蛋白或链霉抗生物素蛋白对抗原进行比色或荧光检测。琥珀酰亚胺酯生物素在 pH 7-9 下与伯胺和仲胺(例如氨基酸和蛋白质)反应。琥珀酰亚胺酯与游离胺基反应生成稳定的酰胺键。琥珀酰亚胺基生物素试剂必须溶解在 DMSO、DMF 或酒精中。用 DMSO 制备的储备溶液在 -20ºC 下可稳定数月。磺基琥珀酰亚胺生物素试剂可溶于水,因此无需使用 DMF 或 DMSO 等有机溶剂。使用具有较长间隔物的生物素(如 Biotin-(AC5)2-OSu 或 Biotin-(AC5)2-Sulfo-OSu)制备的 IgG 具有更好的信噪比。较长的间隔使链霉亲和素或抗生物素 IgG 能够在没有结构抑制的情况下识别生物素。因此,Biotin-(AC5)2-OSu 被用作 Biotin Labeling Kit-NH2 中的生物素标记剂。

Labeling Procedure for IgG1. Prepare 10 mM of the biotin labeling reagent using DMSO.2. Prepare 100 μl of 1 mg per ml IgG buffer solution (pH 7.5-8.5) that does not contain any large molecules with amine compounds.3. Add 1-5ml biotin labeling reagent DMSO solution to the IgG buffer solution and incubate at 37ºC for 1 hour.4. Remove excess biotin labeling reagent using gel filtration or dialysis.5. Prepare solutions for further experiment using an appropriate buffer such as PBST (0.05% Tween 20/PBS).

1. P. Kongtawelert and P. Ghosh, A New Sandwich-ELISA Method for the Determination of Keratan Sulphate Peptides in Biological Fluids Employing a Monoclonal Antibody and Labelled Avidin Biotin Technique., Clin. Chem. Acta,, 1990, 195, 17 .2. G. Paganelli, S. Pervez, A. G. Siccardi, G. Rowlinson, G. Deleide, F. Chiolerio, M. Malcovati, G. A. Scassllati and A. A. Epenetos, Intraperitoneal Radio-localization of Tumors Pre-targeted by Biotinylated Monoclonal Antibodies, Int. J. Cancer, 1990, 45, 1184.3. C. Wagener, U. Kruger and J. E. Shively, Selective Precipitation of Biotin-labeled Antigens or Monoclonal Antibodies by Avidin for Determining Epitope Specificities and Affinities in Solution-phase Assays, Methods Enzymol., 1990, 184, 518 .4. D. M. Boorsma, J. Van Bommel and E. M. Vander Raaij-Helmer, Simultaneous Immunoenzyme Double Labelling Using Two Different Enzymes Linked Directly to Monoclonal Antibodies or with Biotin-avidin, J. Microscopy, 1986, 143, 197.5. A. Komura, T. Tokuhisa, T. Nakagawa, A. Sasase, M. chihashi, S. Ferrone and Y.Mishima, Specific Killing of Human Melanoma Cells with an Efficient 10B-compound on Monoclonal Antibodies, Pigment Cell Res., 1989, 2, 259.6. R. Rappuoli, P. Leoncini, P. Tarli and P. Neri, Competitive Enzyme Immunoassay for Human Chorionic Somatomammotropin Using the Avidin-biotin System, Anal. Biochem., 1981, 118, 168.

Dojindo,DTSSP/50/D630,DTSSP一种使氨基相互反应的交联剂

DTSSP 是一种使氨基相互反应的交联剂。 由于DTSSP分子两端有N-羟基琥珀酰亚胺活性酯,可选择性地与氨基反应,可将载体蛋白与简单的半抗原或制备标记酶结合。 BS3 的化学结构具有连接部分的烷基链。 同时,DTSSP 和 DSP 能够切割容易被还原剂还原的引入二硫键的接头位点。 此外,由于具有磺酸基的活性酯基被引入到DTSSP和BS3中,因此可以在不使用有机溶剂如DMSO或DMF的情况下进行标记反应。

Homo-bifunctional Reagents

Product Name Code Length (Å)
BS3 B574 8.9
DTSSP D630 8.5
1. J. V. Staros, “N-HydroxysulfosuccinimideActive Ester: Bis(N-hydroxysulfosuccinimide) Ester of Two DicarboxylicAcids Are Hydrophilic, Membrane-impermeant, Protein Cross-Linkers”, Biochemistry,1982, 21, 3950.2. S. M. Jung and M. Moroi, “Crosslinking of Platelet Glycoprotein Ib by N-Succinimidyl(4-azidophenyldithio)propionateand 3,3′-Dithiobis(sulfosuccinimidyl propionate), Biochim. Biophys. Acta,1983, 761, 152.3. C. L. Swaim, J. B. Smith and D. L. Smith, “Unexpected Products From theReaction of the Synthetic Cross-linker 3,3′-Dithiobis(sulfosuccinimidylpropionate), DTSSP with Peptides”, J. Am. Soc. Mass Spectrom., 2004,15, 736.4. P. Kao, S. Doerner, T. Schneider, D. Allara, P. Hauptmann and S. Tadigadapa,”A Micromachined Quartz Resonator Array for Biosensing Applications”,J. Microekectromech. Syst., 2009, 18(3), 522.5. G. J. King, A. Jones, B. Kobe, T. Huber, D. Mouradov, D. A. Hume and I. L.Ross, “Identification of Disulfide-containing Chemical Cross-links inProteins Using MALDI-TOF/TOF-Mass Spectrometry”, Anal. Chem., 2008,80, 5036.

Dojindo,微生物活力检测试剂盒-WST/500/M439,Microbial Viability Assay Kit-WST

活细菌细胞检测对于分析食品中的细菌污染或评估设施的清洁度以保护我们免受食物中毒和感染非常重要。细菌细胞检测也用于筛选消毒剂和耐药性检测。通常,计算琼脂板上的菌落数是确定样品中活细菌细胞数的标准方法。然而,菌落的形成需要一到几天的时间。 Dojindo 的 Microbial Viability Assay Kit-WST 可用于通过比色法测定样品中活细菌细胞的数量,并可应用于 96 孔微孔板测定。试剂盒中的电子介体接收来自活细菌细胞的电子并将电子转移到 WST,WST 是 Dojindo 开发的水溶性四唑盐之一。然后可以通过监测 WST 甲臜染料的颜色强度来确定细菌细胞的活力。由于用于细菌细胞培养和成分的几种培养基不会干扰测定(图 5),只需添加测定溶液并孵育一到几个小时即可确定样品中活细菌细胞的初始数量(图2).该检测试剂盒是与福冈工业技术中心生物技术和食品研究所共同开发的。
Fig. 1 Bacterial cell viability detection mechanism.

Assay DataFig. 2 Correlation between initial number of E. coli and time-dependent O.D. increase. The initial number of viable E.coli were determined by a colony counting method.

 

Fig. 3 Correlation between the initial number of SA and time-dependent O.D. increase. The initial number of viable SA were determined by the colony counting method.

Comparison Chart

Fig. 4 Influence of culture media or substances used for bacterial cell culture.The data indicated that WST is less sensitive to various culture media or substances which are used for bacterial cell culture. WST is a better tetrazolium salt than XTT for bacterial cell viability assays.

General Procedure 2Determination of the susceptibility of Staphylococcus aureus to oxacillinOxacillin: antimicrobial agent: 0-64 μg/mlMicroorganism: Staphylococcus aureus (SA)Methicillin-resistant Staphylococcus aureus (MRSA)1. Culture SA or MRSA with Mueller-Hintonmedium containing various concentrations of Oxacillin for 6 hours at 35ºC.2. Add Microbial Viability Assay solution equal to 1/20 the volume of the culture medium.3. Incubate for 2 hours at 35ºC.4. Measure the O.D. at 450 nm to determine the MIC (Minimum inhibitory concentration).

Fig. 4 Susceptibility test of SA and MRSA against Oxacillin*.The data indicated that MRSA has lower susceptibility than SA. The MICs of MRSA (32 μg/ml) and SA (0.5 μg/ml) are close to the MICs determined by the CLSI (Clinical and Laboratory Standards Institute) method.

1. T. Tsukatani, et al., Colorimetric cell proliferation assay for microorganisms in microtiter plate using water-soluble tetrazolium salts. J Microbiol Methods. 2008;75:109-116.2. T. Tsukatani, et al., Colorimetric microbial viability assay based on reduction of water-soluble tetrazolium salts for antimicrobial susceptibility testing and screening of antimicrobial substances. Anal Biochem. 2009;393:117-125.3. T. Tsukatani, et al., Determination of water-soluble vitamins using a colorimetric microbial viability assay based on the reduction of water-soluble tetrazolium salts. Food Chem.2011;127:711-7154. T. Tsukatani, et al., Comparison of the WST-8 colorimetric method and the CLSI broth microdilution method for susceptibility testing against drug-resistant bacteria. J Microbiol Methods. 2012;90:160-1665. Jeffrey C. Pommerville. 2014. Fundamentals of Microbiology: Body Systems Edition (3rd Third Edition), p.339. Burlington, MA: Jones & Bartlett Learning.

Appropriate Cell DensityTable 6 Initial cell number can reach O.D. 0.5 with 1-hour and 4-hour incubation.The initial cell number of each microorganism was determined by colony counting. Each microorganism cell culture was diluted with medium and 190 μl of the cell culture was added to each well. Then 10 μl of assay solution was added. The cells were incubated at 30oC or 37oC for 1 hour and 4 hours to determine how many cells are required to reach O.D.=0.5 at 460 nm.

Dojindo,SOD检测试剂盒WST/500/S311,SOD Assay Kit-WST

超氧化物歧化酶 (SOD) 催化超氧阴离子 (O2.-) 歧化为过氧化氢和分子氧,是最重要的抗氧化酶之一。在哺乳动物中,细胞溶质 SOD 呈绿色,由两个亚基组成,一个含有铜,另一个含有锌 (Cu/Zn-SOD)。线粒体和细菌 SOD 呈红紫色并含有锰 (Mn-SOD)。大肠杆菌有 Mn-SOD 和含铁的 SOD (Fe-SOD)。已经开发了几种直接和间接的方法来确定 SOD 活性。由于方便,经常使用使用硝基四唑蓝的间接方法。然而,这种方法有几个缺点,例如甲臜染料的水溶性差以及它与还原形式的黄嘌呤氧化酶反应。虽然细胞色素 C 也常用于 SOD 活性检测,但它与超氧化物的反应性太高,无法确定低水平的 SOD 活性。
SOD Assay Kit-WST 利用同仁堂的高水溶性四唑盐 WST-1 (2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4 -disulfo-phenyl)-2H-tetrazolium, monosodium salt),用超氧阴离子还原后产生水溶性甲臜染料(图 1)。吸收光谱如图 2 所示。WST-1 与超氧阴离子的反应性比细胞色素 C 低 70 倍;因此,可以进行高灵敏度的 SOD 检测,并且可以用缓冲液稀释样品以最大限度地减少背景问题。 WST-1 不与还原形式的黄嘌呤氧化酶反应;因此,甚至可以检测到 SOD 的 100% 抑制。超氧阴离子对 WST-1 的还原速率与黄嘌呤氧化酶活性呈线性关系,并被 SO​​D 抑制(见下图)。因此,可以使用比色法测定 SOD 或 SOD 样物质的 IC50(50% 抑制浓度)。

Fig. 1 SOD Inhibition assay mechanism

Fig. 2 Absorption spectrum of WST-1 formazan


Assay Procedure

a)After the addition of enzyme working solution, the mixed solution generates superoxide. Use a multi-channel pipette to add the enzyme working solution to minimize the reaction time lag.b)If the microplate reader has a temperature control function, incubate the plate on the microplate holder at 37°C.

Recent Publications

Samples from Treatments References
hESCs SOD-1 overexpressing Amyotrophic Lateral Sclerosis Model Derived from Human Embryonic Stem Cells Overexpressing Mutant Superoxide Dismutase 1T. Wada, et al., Stem Cells Trans Med, 1, 396(2012)
mouse heart, liver tetrathiomolybdate Copper chelation by tetrathiomolybdate inhibits lipopolysaccharide-induced inflammatory responses in vivoH. Wei, et al., Am J Physiol Heart Circ Physiol, 301, H712(2011)
MEF cells presenilin knock-out Presenilins Promote the Cellular Uptake of Copper and Zinc and Maintain Copper Chaperone of SOD1-dependent Copper/Zinc Superoxide Dismutase ActivityM. A. Greenough, et al., J Biol Chem, 286, 9776(2011)
mouse lung SOD3 knockout, overexpressing Extracellular superoxide dismutase protects against pulmonary emphysema by attenuating oxidative fragmentation of ECMH. Yao, et al., PNAS, 107, 15571(2010)
mouse liverNrf2 nuclear factor-E2-related factor-2 Deletion of nuclear factor-E2-related factor-2 leads to rapid onset and progression of nutritional steatohepatitis in miceH. Sugimoto, et al., Am J Physiol Gastrointest Liver Physiol, 298, G283(2010)
bacteria(Francisella strains) gallium-transferrin Gallium Disrupts Iron Uptake by Intracellular and Extracellular Francisella Strains and Exhibits Therapeutic Efficacy in a Murine Pulmonary Infection ModelO. Olakanmi, et al., Antimicrob Agents Chemother, 54, 244(2010)

 


Preparation of Various Sample Solution

Cells (Adherent cells: 9×106 cells, Leukocytes: 1.2 x107 cells)1. Harvest cells with a scraper, centrifuge at 2,000 g for 10 min at 4ºC, and discard the supernatant.2. Wash the cells with 1 ml PBS and centrifuge at 2,000 g for 10 min at 4ºC. Discard the supernatant. Repeat this step.3. Break cells using the freeze-thaw method (-20ºC for 20 min, then 37ºC bath 10 min, repeat twice).4. Add 1 ml PBS. If necessary, sonicate the cell lysate on an ice bath (60 W with 0.5 sec interval for 15 min).5. Centrifuge at 10,000 g for 15 min at 4ºC.

Plant or Vegetable (200 mg)1. Add 1 ml distilled water, and homogenize the sample using a homogenizer with beads.2. Filter the homogenate with paper filter, and lyophilize the filtrate.3. Measure the weight of the lyophilized sample, and dissolve with 0.1 M phosphate buffer (pH 7.4) to prepare sample solution.

Tissue (100 mg)1. Wash the tissue with saline to remove as much blood as possible. Blot the tissue with paper towels and then measure its weight.2. Add 400-900 μl sucrose buffer (0.25 M sucrose, 10 mM Tris, 1 mM EDTA, pH 7.4) and homogenize the sample using Teflon homogenizer. If necessary, sonicate the homogenized sample on an ice bath (60W with 0.5 second intervals for 15 min).3. Centrifuge the homogenized sample at 10,000 g for 60 min at 4ºC, and transfer the supernatant to a new tube.

Tea (antioxidant activity detection)1. Add 60 ml boiled water to 10 g of tea, and leave it for 2.5 min.2. Filter the extract with paper filter and then filter again with a 0.45 μm membrane filter.3. Dilute the filtrate with distilled water to prepare sample solution.

Erythrocytes or Plasma1. Centrifuge 2-3 ml of anticoagulant-treated blood (such as heparin 10 U/ml final concentration) at 600 g for 10 min at 4°C.2. Remove the supernatant and dilute it with saline to use as a plasma sample. Add saline to the pellet to prepare the same volume, and suspend the pellet.3. Centrifuge the pellet suspension at 600 g for 10 min at 4ºC, and discard the supernatant.4. Add the same volume of saline, and repeat Step 3 twice.5. Suspend the pellet with 4 ml distilled water, then add 1 ml ethanol and 0.6 ml chloroform.6. Shake the mixture vigorously with a shaker for 15 min at 4°C.7. Centrifuge the mixture at 600 g for 10 min at 4ºC and transfer the upper water-ethanol phase to a new tube.8. Mix 0.1 ml of the upper phase with 0.7 ml distilled water, and dilute with 0.25% ethanol to prepare sample solution.

Extracellular SOD (EC-SOD)1. Prepare a 0.5 ml volume of Con A-sepharose column equilibrated with PBS.2. Apply supernatant of a tissue homogenate on the column, and leave the column for 5 min at room temperature.3. Add total 10 ml PBS to wash the column.4. Add 1 ml of 0.5 M α-methylmannoside/PBS, and collect the eluate. Repeat 5 times.5. Use the eluate for the SOD assay without dilution. If the SOD activity is high enough, dilute the eluate with PBS.

Wine (antioxidant activity detection)1. Filter wine with a 0.45 μm membrane filter.2. Dilute the filtrate with distilled water to prepare sample solution.

1. J. M. McCord, et al., An Enzymic Function for Erythrocuprein(hemocuprein). J Biol Chem. 1969;244:6049-6055.2. B. L. Geller, et al., A Method for Distinguishing Cu,Zn- and Mn-Containing Superoxide Dismutases. Anal Biochem. 1983;128:86-92.3. S. Goldstein, et al., Comparison Between Different Assays for Superoxide Dismutase-like Activity. Free Rad Res Commun. 1991;12:5-10.4. R. H. Burdon, et al., Reduction of a Tetrazolium Salt and Superoxide Generation in Human Tumor Cells (HeLa). Free Rad Res Commun. 1993;18:369-380.5. M. W. Sutherland, et al., The Tetrazolium Dyes MTS and XTT Provide New Quantitative Assays for Superoxide and Superoxide Dismutase. Free Radic Res. 1997;27:283-289.6. H. Ukeda, et al., Flow-Injection Assay of Superoxide Dismutase Based on the Reduction of Highly Water-Soluble Tetrazolium. Anal Sci. 1999;15:353-357.7. H. Ukeda, et al., Spectrophotometric Assay for Superoxide Dismutase Based on the Reduction of Highly Water-soluble Tetrazolium Salts by Xanthine-Xanthine Oxidase. Biosci Biotechnol Biochem. 1999;63:485-488.8. H.Ukeda, et al., Spectrophotometric Assay of Superoxide Anion Formed in Maillard Reaction Based on Highly Water-soluble Tetrazolium Salt. Anal Sci. 2002;18:1151-1154.9. N. Tsuji, et al., Enhancement of Tolerance to Heavy Metals and Oxidative Stress in Dunaliella Tertiolecta by Zn-induced Phytochelatin Synthesis. Biochem Biophys Res Commun. 2002;293:653-659.10. A. Sakudo, et al., Impairment of Superoxide Dismutase Activation by N-Terminally Truncated Prion Protein (PrP) in PrP-deficient Neuronal Cell Line. Biochem Biophys Res Commun. 2003;308:660-667. 

What is the definition of a Unit?

One unit is defined as a point where a sample gives 50% inhibition of a colorimetric reaction between reactive dye (such as cytochrome C, WST-1, nitro-tetrazolium blue or XTT) and superoxide anion. For example, if the O.D. of a sample that does not contain any SOD is 1.0, another sample that gives 0.5 O.D. is defined as having 1 unit of SOD activity. You can use this unit to determine the SOD activity of your sample. Therefore, SOD activities determined using different dyes or methods are not comparable with each other.

Can I use standard SOD to determine SOD activity in sample solutions?

Yes, you can. Prepare a inhibition curve (typical inhibition curve, and determine SOD activity in the sample solution. SOD bovine erythrocytes (CAS# 9054-89-1, EC 1.15.1.1) can be purchased from Sigma (catalog# S7571).

Can I use a kinetic method to determine SOD activity?

Yes, you can use a kinetic method for SOD assay. Since the rate of the color development remains the same for up to 20 minutes, measure the slope for 5 minutes during this linear phase.

The sample has color. Can I still use this sample?

Yes, you can still use the sample. Diluting the sample will minimize the interference. Subtract the O.D. of blank 2 from the O.D. of the sample to cancel out the background color. However, if the SOD activity in the sample is low, it may not be measurable.

How do I prepare more Dilution buffer?

Dilution buffer is PBS. Please prepare the Dilution buffer with following concentrations; 137 mM NaCl, 2.7 mM KCl, 1.47 mM KH2PO4, 8.1 mM Na2HPO4, pH 7.4.

Can I determine Mn-SOD and Cu/Zn-SOD independently using this kit?

Yes. In order to measure Mn-SOD activity, it is necessary to block the Cu/Zn-SOD activity using potassium cyanide (KCN). Adding 1 mM KCN to samples can block Cu/Zn-SOD activity completely. To measure Cu/Zn-SOD activity, measure the total SOD activity with and without KCN, and then subtract the Mn- SOD activity from total SOD activity.

Can Mn-SOD, Cu, Zn-SOD, and EC (extracellular)-SOD measurement be differentiated?

Mn-SOD can be measured by blocking the Cu/Zn-SOD and EC-SOD activity using potassium cyanide (KCN) or Diethyldithiocarbamate (DDC).[Measurement Example]・Add 1-10 mmol/l KCN or DDC to the sample solution and incubate at room temperature for 5 minutes.・Measure SOD-activity and follow the SOD Assay Kit-WST Technical Manual.*Caution*・Optimization is required for the concentration of KCN or DDC and the incubation time by sample. Please refer to the references below.・When calculating the unit (U), please consider the dilution ration of the sample prepared by adding KCN or DDC.

<Reference using KCN (potassium cyanide)> 1) Greenough MA, Volitakis I, Li QX, Laughton K, Evin G, Ho M, Dalziel AH, Camakaris J, Bush AI, “Presenilins promote the cellular uptake of copper and zinc and maintain copper chaperone of SOD1-dependent copper/zinc superoxide dismutase activity”, J Biol Chem., 2011, 286, 9776.

2) Hajime Fujimoto, Jun-ichi Taguchi, “Manganese superoxide dismutase polymorphism affects the oxidized low-density lipoproteininduced apoptosis of macrophages and coronary artery disease.”, European Heart Journal. 2008. 29, 1267.

3) A. Dacanay, S. C. Johnson, R. Bjornsdottir, R. O. Ebanks, N. W. Ross, M. Reith, R. K. Singh, J. Hiu, and L. L. Brown, “Molecular Characterization and Quantitative Analysis of Superoxide Dismutases in Virulent and Avirulent Strains of Aeromonas salmonicida subsp. salmonicida” Journal of Bacteriology, 2003, 185 (15), 4336.

<Reference using DDC (Diethyldithiocarbamate)>1) Heikkila RE, Cabbat FS, Cohen G. “In vivo inhibition of superoxide dismutase in mice by diethyldithiocarbamate”, J Biol Chem., 1976, 251, 2182.

How long can I store the sample?

A sample stored in a freezer at -80ºC is stable for 1 month.

Can I measure the levels of superoxide anion using this kit?

No. However, you could simply use WST-1, instead of this kit, to measure superoxide. You would need a standard to determine the amount of superoxide in sample solution. Since superoxide is not stable and reacts with various materials, it might be difficult to determine the total amount of superoxide generated in the system. The xanthine-xanthine oxidase system in this kit can be used as a standard for measuring the relative amount of superoxide production in each sample.

Inhibition curve by WST Method

Fig. 5 Inhibition curve prepared by different data acquisition times

Dojindo,PlasMem Bright Green/100/P504,质膜 (PM)

质膜 (PM) 由将细胞内环境与细胞外空间隔开的脂质双层组成。 因此,PM 在许多细胞行为中起着核心作用,例如细胞迁移、细胞伸展和信号级联。 此外,PM功能障碍是一个重要的生物标志物,因为它与细胞状态有关,并与许多疾病有关。

Dojindo 的 PlasMem Bright 染料克服了这些限制。 PlasMem Bright 染料设计用于染色 PM 超过一天。 此外,与其他市售染料相比,PlasMem Bright 染料更易溶于水,并且可以用培养基稀释。 PlasMem Bright 染料提供两种不同的颜色选择(绿色和红色),并作为即用型 DMSO 溶液提供。 使用生长培养基或 HBSS 通过单一稀释步骤即可轻松制备工作溶液。

For more information on PlasMem Bright Dyes, please refer to the publication below:Takahashi, M. et al., “Amphipathic Fluorescent Dyes for Sensitive and Long-Term Monitoring of Plasma Membranes“ bioRxiv, 2020, doi: https://doi.org/10.1101/2020.11.16.379206

 

The general number of usable assays per 100 ul35 mm dish x 10μ-Slide 8 well x 10


Low toxicity, No washing, and High retentivity

 


High retentivity on plasma membrane

HeLa cells stained with each plasma membrane staining reagent were incubated for 24 hrs and each the resulting fluorescent image was compared. PlasMem Bright series had higher retentivity on plasma membrane than other products.

 


Clear visualization of plasma membrane

Observe morphology of neuron (differentiated SH-SY5Y cells) and localization of mitochondria in axon.

 


Experimental Example: Mitochondrial detection in neuroblast (SH-SY5Y cells)

The neuroblasts SH-SY5Y cells were stained with PlasMem Bright Green (green), MitoBright LT Red (red) and Hoechst 33342 (blue), and 3D images were obtained with a confocal fluorescence microscope.

 

<Detection Condition>Plasma Membrane (PlasMem Bright Green, green): Ex. 488 nm / Em. 500 – 560 nmMitochondria (MitoBright LT Red, red): Ex. 561 nm / Em. 560 – 620 nmNuclear (Hoechst 33342, blue): Ex. 405 nm / Em. 400 – 450 nm

<Protocol>(1) Wash SH-SY5Y cells with HBSS(2) Add PlasMem Bright Green (diluted 200 times), Hoechst 33342 (final concentration: 5 µg / ml) and MitoBright LT Red (final concentration: 0.1 µmol / l) prepared in the medium.(3) Incubate for 10 minutes(4) Wash the cells twice with HBSS(5) Observation with a fluorescence microscope


Experimental Example: Co-staining with exosomes

HeLa cells stained with PlasMem Bright Green were added with exosomes stained with the ExoSparkler Exosome Membrane labeling Kit-Red, and the uptake of exosomes into the cells was observed.

  • HeLa cells (Live cell)

 

 

  • HeLa cells (PFA fixed cells)

 

<Detection conditions>Plasma Membrane (PlasMem Bright Green, green): Ex. 488 nm / Em. 500 –560 nmExosome (ExoSparkler Exosome Membrane Labeling Kit-Red, red): Ex. 561 nm / Em. 560 –620 nm

<Protocol>(1) HeLa cells and incubate for 24 hours(2) Remove the supernatant and add PlasMem Bright Green (100-fold dilution) prepared in the medium.(3) Incubate for 10 minutes(4) Wash the cells 3 times with HBSS(5) Add 175 μl of MEM medium and 25 ul of Exosome solution stained with ExoSparkler Exosome Membrane Labeling Kit-Red.(6) Incubate overnight in a CO2 incubator(For immobilization) Wash cells twice with HBSS, add 4% PFA, incubate for 15 minutes, then wash cells twice with HBSS(7) Observed with a confocal laser scanning microscope


Experimental example: Time-lapse imaging of brain-derived mouse neuroblastoma (N1E-115 cells)

Time-lapse imaging of N1E-115 cells stained with PlasMem Bright Green diluted 200-fold in medium for 30 min.

 

<Detection conditions>・ Cells: N1E-115 cells (brain-derived mouse neuroblastoma)・ Medium: 5% FBS, 1% glutamine-containing D-MEM (Low-glucose)・ Culture equipment: 35 mm glass bottom dish

・ Imaging equipment: Fluorescence microscope with incubator・ Shooting time: 1 hour, shooting interval: 2 minutes

Data was kindly provided from Dr. K Fukui, Shibaura Institute of Technology.


Excitation and emission spectra of PlasMem Bright dyes

Nuclear (Blue), Mitochondria (Red), Plasma Membrane (Green)

Dojindo,细胞计数标准化试剂盒C544,Cell Count Normalization Kit/1000/C544

细胞计数标准化试剂盒采用核酸染色染料 Hoechst 33342,它与核 DNA 结合以发出蓝色荧光。 通过测量这种蓝色荧光,可以通过简单的步骤轻松地对测量值进行校正,而视觉细胞计数方法需要繁琐的程序。 此外,与通过蛋白质或 ATP 量进行校正不同,该试剂盒不需要裂解程序。 此外,试剂盒中包含的淬灭缓冲液可以在没有任何背景的情况下直接测量荧光信号。

Necessity of normalizationWhen cells are analyzed in a microplate, the results obtained may sometimes differ depending on the number of cells per well. In such cases, normalization of the measured values will be necessary.

 


Comparison with conventional methodNormalization of the measured values at the time of plate assay is done by using the cell number or nucleus/protein level as an indicator. Among these detection techniques, our nuclear staining kit is easy-to-use and capable of analyzing multiple specimens.

*1 In experiment the number of nuclei varies, it may differ from the actual cell number.*2 In experiment protein level fluctuates, it may be different from the actual cell number.

High correlation with cell numberWhen you are performing a plate assay the data needs to be normalized. In order to normalize the data, an assessment method equivalent (i.e. cell counting) is essential. In the experiments below, changes in fluorescence intensity were confirmed by cell number-dependents. Data at the time of plate assay were normalized by using this kit and the cell counting method. A comparison was then made between the two methods.

 


Cell number-dependent changes in fluorescence intensityCell number-dependent changes in fluorescence intensity were observed, and the results were highly linear.

HeLa cells were serially diluted and seeded in a 96-well microplate. After incubation overnight, fluorescence intensity was measured using this kit.


Comparison with cell counting methodWhen normalization occurred at the time of the plate assay (lactate measurement), this kit showed equivalent results to cell counting.

2-Deoxy-D-glucose was added to HeLa cells. Lactate levels in the supernatant were quantified using the Lactate Assay Kit-WST (Item#: L256)


Storage Condition: Store at 0-5 oC and protect from light.Kit Contents:

Dojindo,BCECF/5/B031,BCECF 是细胞内 pH 探针

BCECF 是最广泛使用的细胞内 pH 探针。 Tsien 博士和其他人通过引入两种额外的羧酸盐来改进这种羧基荧光素,使其能够更好地被细胞保留。 BCECF 是高度水溶性的,因为它在中性 pH 下具有 4 至 5 个负电荷;加载后变得难以通过细胞膜。其 pKa 值为 6.97,高于羧基荧光素。 BCECF在激发光谱中在439 nm处有一个等吸收点,因此可用于比率测定,类似于Fura 2。比率测定通常使用505 nm和439 nm的波长,设置490 nm和450 nm滤光片在激发光源前。 530 nm 滤光片用于其荧光信号。请注意,激发光谱与吸收光谱略有不同。 BCECF-AM 是 BCECF 的乙酰氧基甲酯,可以轻松地将 BCECF 加载到细胞中。 BCECF-AM 与其他乙酰氧基甲酯一样,仅通过孵育才能在细胞中积累。 BCECF-AM 对水分非常敏感;应该小心处理。 DMSO 溶液的颜色随着 AM 形式的分解从淡黄色变为深橙色。因此,可以通过颜色变化来监测 AM 酯的水解。

Chemical Structure

General Protocol (for Human Neutrophil)*Reagents:– 1 mM BCECF-AM/DMSO solution (1 mg BCECF in 1.45 ml DMSO)– HEPES buffer saline (20 mM HEPES, 153 mM NaCl, 5 mM KCl, 5 mM glucose, pH 7.4)

Protocol:1. Suspend cells in HEPES buffer solution to prepare 4×107 cells per ml.2. Add 1 mM BCECF-AM/DMSO solution to the cell suspension to prepare 3 μM BCECF-AM (1/300 vol of cell suspension) as the final concentration.3. Incubate the cell suspension at 37ºC for 30 minutes.4. Wash the cells 3 times with HEPES buffer saline and then prepare 3×106 cells per ml of the cell suspension.5. Determine the fluorescence intensity using a fluorescence microscope or a confocal laser microscope coupled with an image analyzer.

* Cell staining conditions depend on cell type, so it is necessary to optimize the conditions for each experiment

1. R. A. Steinhardt, et al., Development of K+-conductance and Membrane Potentials in Unfertilized Sea Urchin Eggs After Exposure to NH4OH. Nature. 1973;241:400-401.2. T. J. Rink, et al., Cytoplasmic pH and Free Mg2+ in Lymphocytes. J Cell Biol. 1982;95:189-196.3. A. M. Paradiso, et al., Na+ -H+ Exchange in Gastric Glands as Measured with a Cytoplasmic-trapped, Fluorescent pH Indicator. PNAS. 1984;81:7436-7440.4. S. Grinstein, et al., Phorbol Ester-induces Changes of Cytoplasmic pH in Neutrophils: Role of Exocytosis in Na+ – H+ Exchange. Am J Physiol. 1985;248:C379-C386.5. G. B. Zavoico, et al., Regulation of intracellular pH in human platelets. Effects of thrombin, A23187, and ionomycin and evidence for activation of Na+/H+ exchange and its inhibition by amiloride analogs. J Biol Chem. 1986;261:13160-13167.6. G. R. Bright, et al., Fluorescence Ratio Imaging Microscopy: Temporal and Spatial Measurements of Cytoplasmic pH. J Cell Biol. 1987;104:1019-1033.7. C. Aalkjaer, et al., Intracellular pH Regulation in Resting and Contracting Segments of Rat Mesenteric Resistance Vessels. J Physiol. 1988;402:391-410.8. K. Tsujimoto, et al., Intracellular pH of Halobacteria Can Be Determined by the Fluorescent Dye 2 E 7 Ebis(carboxyethyl)-5(6)-carboxyfluorescein. Biochem Biophys Res Commun. 1988;155:123-129.9. M. A. Kolber, et al., Measurament of Cytotoxicity by Target Cell Release and Retention of the Fluorescent Dye Bis-carboxyethylcarboxyfluorescein(BCECF). J Immunol Methods. 1988;108:255-264.10. H. Harada, et al., cAMP Activates Cl-/HCO3 – Exchange for Regulation of Intracellular pH in Renal Epithelial Cells. Biochim Biophys Acta. 1991;1092:404-407.11. C. C. Freudenrich, et al., Intracellular pH Modulates Cytosolic Free Magnesium in Cultured Chicken Heart Cells. Am J Physiol. 1992;262:C1024-C1030.12. K. Khodakhah, et al., Functional Heterogeneity of Calcium Release by Inositol Triphosphate in Single Purkinje Neurones, Cultured Cerebellar Astorocytes, and Peripheral Tissues. PNAS. 1993;90:4976-4980.13. G. Boyarsky, et al., Superiority of in vitro Over in vivo Calibrations of BCECF in Vascular Smooth Muscle Cells. FASEB J. 1996;10:1205-1212.14. S. A. Weston, et al., New Fluorescent Dyes for Lymphocyte Migration Studies Analysis by Flow Cytometry and Fluorescent Microscopy. J Immunol Methods. 1990;133:87-97.15. L. S. De Clerck, et al., Use of Fluorescent Dyes in the Determination of Adherence of Human Leucocytes to Endothelial Cells and the Effects of Fluorochromes on Cellular Function. J Immunol Methods. 1994;172:115-124.

Dojindo,BAPTA/500/B019,BAPTA 钙选择性螯合剂

BAPTA 是由 Tsien 博士开发的钙选择性螯合剂。 它的 logKCa=6.97 和 logKMg=1.77。 基本螯合单元类似于EGTA,但两个脂肪族氮原子被芳香族氮原子取代。 因此,BAPTA 在生理 pH 下不被质子化。 BAPTA 具有 pKa3=5.47 和 pKa4=6.36。 该性质表明去质子化步骤不包括在其钙络合步骤中,并且它具有比EGTA更高的络合率,因为它不受质子干扰的影响。 BAPTA-AM 是 BAPTA 的乙酰氧基甲酯衍生物,可以使用 AM 方法轻松加载到细胞中。 BAPTA-AM 可用于控制细胞内钙浓度。

Calcium Chelation

1. R. Y. Tsien, New Calcium Indicators and Buffers with High Selectivity against Magnesium and Protons: Design, Synthesis, and Properties of Prototype Structures. Biochemistry. 1980;19:2396-2404.2. R. Y. Tsien, A Non-disruptive Technique for Loading Calcium Buffers and Indicators into Cells. Nature. 1981;290:527-528.3. J. I. Korenbrot, et al., The Use of Tetracarboxylate Fluorescent Indicators in the Measurement and Control of Intracellular Free Calcium Ions. Soc Gen Physiol Ser. 1986;40:347-363.4. S. M. Harrison, et al., The Effect of Temperature and Ionic Strength on the Apparent Ca-affinity of EGTA and the Analogous Ca-chelators BAPTA and Dibromo-BAPTA. Biochim Biophys Acta. 1987;925:133-143.5. E. W. Gelfand, et al., Dissociation of Unidirectional Influx of External Ca2+ and Release from Internal Stores in Activated Human T Lymphocytes. Eur J Immunol. 1990;20:1237-1241.6. J. P. Kao, et al., Active Involvement of Ca2+ in Mitotic Progression of Swiss 3T3 Fibroblasts. J Cell Biol. 1990;111:183-196.7. M. L. Schubert, et al., Functionally Distinct Muscarinic Receptors on Gastric Somatostatin Cells. Am J Physiol. 1990;258:G982-G987.8. Y. Tojyo, et al., Inhibitory Effects of Loading with the Calcium-chelator 1, 2-Bis(o-aminophenoxy)ethane-N, N, N E N Etetraacetic acid (BAPTA) on Amylase Release and Cellular ATP Level in Rat Parotid Cells. Biochem Pharmacol. 1990;39:1775-1779.

Dojindo,细胞衰老检测试剂盒/SPiDER-ßGal/10/SG04,Cellular Senescence Detection Kit

正常细胞的DNA损伤是由反复的细胞分裂和氧化应激引起的。可以触发细胞衰老,一种不可逆的生长停滞状态,以防止 DNA 损伤的细胞生长。衰老相关的 β-半乳糖苷酶 (SA-β-gal) 在衰老细胞中过度表达,已被广泛用作细胞衰老的标志物。虽然 X-gal 是一种众所周知的检测 SA-β-gal 的试剂,但存在以下缺点:1)由于细胞通透性差,需要固定细胞,2)由于目测难以测定,定量能力低染色细胞和未染色细胞的区别,3)染色时间长。
细胞衰老检测试剂盒 – SPiDER-βGal 允许以高灵敏度和易用性检测 SA-β-gal。 SPiDER-βGal是一种检测β-半乳糖苷酶的新试剂,具有高细胞通透性和高细胞内滞留性。通过使用抑制内源性β-半乳糖苷酶活性的试剂(巴弗洛霉素A1),不仅在活细胞中特异性检测SA-β-gal,而且在固定细胞中也能特异性检测到SA-β-gal。因此,SPIDER-βGal 可用于流式细胞仪的定量分析。

Kim 等人最近的工作。在 Mayo Clinic 使用我们的细胞衰老检测试剂盒 – SPiDER-βGal 来评估内皮细胞中的细胞衰老。他们对动脉粥样硬化性肾动脉狭窄 (ARAS) 细胞中的 SA-βGal 进行染色,并用 CD31 对细胞进行共染色,CD31 是内皮细胞的标志物。他们表明,ARAS + Elamipretide* 治疗略微改善了内皮细胞衰老。与用于检测 β-半乳糖苷酶的市售探针不同,试剂盒中包含的 SPiDER-βGal 具有较高的细胞内保留。该产品的主要特点是可用于 SA-β-Gal 和其他标记物的共染色。我们的试剂盒是细胞衰老研究的有用工具。*Elamipretide:线粒体靶向肽

有关数据的更多信息,请参阅以下出版物:S。 R. Kim、A. Eirin、X. Zhang、A. Lerman 和 L. O. Lerman,“线粒体保护部分减轻猪动脉粥样硬化性肾动脉狭窄中的肾细胞衰老。”,细胞。生理学。生化。 ., 2019, 52, 617。


Simple Procedure

After Bafilomycin A1 Working Solution is added, SPiDER-βGal Working Solution is added without removing Bafilomycin A1 Working Solution.


Difference between X-Gal method and Cellular Senescence Detection Kit – SPiDER-βGal IOur kit is applicable to both living and fixed cells. However, X-Gal method is only applicable to dead cells as shown below:

Why is Bafilomycin A1 added?Endogenous β-galactosidase existing in living cells interfere with selective detection of SA-β-Gal. Bafilomycin A1 is an inhibitor of ATPase in lysosome. pH in lysosome is kept neutral by adding Bafilomycin A1. Cellular Senescence Detection Kit – SPiDER-βGal contains Bafilomycin A1 which allows to detect SA-β-Gal selectively. Bafilomycin A1 is utilized for living cell assays only. Bafilomycin A1 is not used in fixed cells because intracellular pH is controlled with the buffer.


Difference between X-Gal method and Cellular Senescence Detection Kit – SPiDER-βGalOur kit allows quantification of SA-β-Gal using flow cytometry.

 


Markers of Senescent Cells

 


Co-staining of SA- β-gal and DNA Damage marker in WI-38 cells

Procedure:1. Passage 1 and 10 of WI-38 were used. The procedure was followed as the manual within the kit.2. Add 4% PFA/PBS to the cells and incubate for 15 minutes at room temperature3. Wash the cells 3 times with PBS4. Add 0.1% Triton X-100/PBS to cells and incubate for 30 minutes at room temperature5. Wash the cells 3 times with PBS6. Add 1% BSA/PBS to the cells and incubate for 1 hour at the room temperature7. Add anti- γ-H2AX antibody (rabbit) diluted with 1% BSA/PBS to the cells and incubate at 4℃ overnight8. Wash the cells 3 times with PBS9. Add Anti- rabbit secondary antibody (Alexa Fluor 647) diluted with 1% BSA/PBS to the cells and incubate at room temperature for 2 hours10. Wash cells 3 times with PBS11. Add 2 μg/ml DAPI (code: D523) diluted with PBS to the cells and incubate for 10 minutes at room temperature12. Wash cells 3 times with PBS and observe under a confocal microscope


Co-staining of SA- β-gal and DNA Damage marker in fixed WI-38 cells

Preparation of SPiDER-βGal working solutionDilute the SPiDER-βGal DMSO stock solution 2,000 times *1 with McIlvaine buffer (pH 6.0).*1 Fixation and permeablization could leads to lower sensitivity (Figure 1), if you need higher signals,dilute the SPiDER-βGal DMSO stock solution 500 – 1,000 times with the McIlvaine buffer (Figure 2).

Preparation of McIlvaine buffer (pH 6.0)Mix 0.1 mol/l citric acid solution (3.7 ml) and 0.2 mol/l sodium phosphate solution (6.3 ml). Confirm the pH is 6.0. If the pH is not 6.0, adjust the pH by adding either citric acid solution or sodium phosphate solution. Dilute this buffer 5 times with ultrapure water.

Staining procedure (35 mm dish)1. Prepare cells on 35 mm dish for assay and culture the dish at 37℃ overnight in a 5% CO2 incubator.2. Remove the culture medium. Add 2 ml of 4% paraformaldehyde (PFA) /PBS solution to the cells and incubate at room temperature for 3 minutes *2.*2 Avoid a longer treatment period, which leads to decrease in SA-β-gal activity.3. Remove the supernatant, and wash the cells 3 times with 2 ml of PBS.4. Add 2 ml of SPiDER-βGal working solution and incubate at 37℃ for 30 minutes*3.*3 We recommend not to use a 5% CO2 incubator for fixed cell experiments. If incubation is done in a 5% CO2 incubator, the pH of the buffer may become acidic. Acidic pH results in higher background from the endogenous β-galactosidase activity and it would be difficult to distinguish between normal cells and senescent cells.5. After removing the supernatant, wash the cells twice with PBS.6. Add 0.1% Triton X-100/PBS to cells and incubate for 30 minutes at room temperature.7. Wash the cells twice with PBS.8. Add 1% BSA/PBS to the cells and incubate for 1 hour at the room temperature9. Add anti- γ-H2AX antibody (mouse) diluted with 1% BSA/PBS to the cells and incubate at 4℃ overnight.10. Wash the cells 3 times with PBS.11. Add anti- mouse secondary antibody (Cy5) diluted with 1% BSA/PBS to the cells and incubate at room temperature for 1 hour.12. Wash cells twice with PBS and observe under a fluorescence microscope.


Quantification with confocal quantitative image cytometerIn the conventional method of X-gal, SA-β-gal-positive cells are counted under microscope and calculate the percent of the senescent cells by compared with total cells. The SA-β-gal-positive cells were stained with this kit and analyzed using confocal quantitative image cytometer CQ1(Yokogawa Electric Corporation).

The difference of SA-β-gal-positive cells ratio were shown in WI-38 cells depending on the number of passage. The data was quickly analysed with the confocal quantitative image cytometer compared with the manually counting procedure with X-gal staining method.


Recommended Filter

Comparison with other product

 

Doxorubicin-treatment A549 cells stained with each reagent were incubated for 30 min or 120 min and the resulting fluorescence images were compared. SPiDER-ßGal (Item# SG04) had higher fluorescent intensity than other product.

・Epifluorescence Microscope (Fixed A549 cells)

・Confocal Microscopy (Fixed A549 cells)

Fluorescence imaging of SA-β-gal1. WI-38 cells (5×104 cells/dish, MEM, 10% fetal bovine serum, 1% penicillin-streptmycin) of passage number 0 and 12 were seeded respectively in a µ-dish 35 mm (ibidi) and cultured overnight in a 5% CO2 incubator.2. The cells were washed with 2 ml of HBSS once.3. Bafilomycin A1 working solution (1 ml) was added to the culture dish, and the cells were incubated for 1 hour in a 5% CO2 incubator.4. SPiDER-βGal working solution (1 ml) and 1 mg/ml Hoechst 33342 (1 µl) were mixed. Then the mixture solution was added to the culture dish, and the cells were incubated for 30 minutes in a 5% CO2 incubator.5. After the supernatant was removed, the cells were washed with 2 ml of HBSS twice.6. HBSS (2 ml) were added and the cells were observed by confocal fluorescence microscopy (Excitation: 488 nm Emission (wavelength/band pass): 550/50 nm).

Fig.4 Fluorescence imaging of SA-β-Gal in WI-38 cellsA. Passage 0, B. Passage 12(green: SPiDER-βGal, blue: Hoehst 33342)

Quantitative analysis of SA-β-gal positive cells by flow cytometry1. WI-38 cells (1×105 cells/dish, MEM, 10% fetal bovine serum, 1% penicillin-streptmycin) of passage number 1 and 12 were seeded respectively in a µ-dish 35 mm (ibidi) and cultured overnight in a 5%CO2 incubator.2. The cells were washed with 2 ml of HBSS once.3. Bafilomycin A1 working solution (1 ml) was added to the culture dish, and the cells were incubated for 1 hour in a 5%CO2 incubator.4. SPiDER-βGal working solution (1 ml) was added to the culture dish, and the cells were incubated at for 30 minutes in a 5%CO2 incubator.5. After the supernatant was removed, the cells were washed with 2 ml of HBSS twice.6. The cells were harvested by trypsin and resuspended in MEM (10% fetal bovine serum, 1% penicillin-streptmycin). 7. The cells were observed by a flow cytometer (Excitation: 488 nm, Emission: 515-545 nm).

Fig.5 Quantification of SA-β-Gal positive WI-38 cells

How to Prepare a Positive Control using Drug TreatmentSenescence induction (Doxorubicin-treatment WI-38 cells)1. Seed WI-38 cells (1×106 cells/dish, MEM, 10% fetal bovine serum, 1% penicillin-streptmycin) of passage number 3 in a 10 cm culture dish and culture at 37 ℃ overnight in a 5% CO2 incubator.2. Remove the culture medium, and wash the cells with 10 ml of PBS once.3. Prepare for 0.2 μmol/L of Doxorubicin with serum-free MEM. In case, if serum free media is not available, serum contained media may be used.4. Add Doxorubicin (10 mL) to the dish and culture at 37 ℃ for 3 days in a 5% CO2 incubator.5. Remove the supernatant, and wash the cells with 10 ml of PBS once.6. Add MEM (10% fetal bovine serum, 1% penicillin-streptmycin) to the dish and culture at 37 ℃ for 3 days in a 5% CO2 incubator.7. Remove the culture medium, and wash the cells with 10 ml of PBS once.8. Trypsinize the cells with and without Doxorubicin treatment.

Fixed cell imaging1. Prepare cells in a 8-well ibidi for assay and culture the cells at 37℃ overnight in a 5% CO2 incubator.2. Remove the culture medium. Wash the cells with PBS once. Add 4% paraformaldehyde (PFA) /PBS solution to the cells and incubate at room temperature for 3 minutes.3. Remove the supernatant. Wash the cells with PBS twice.4. Mix SPiDER-βGal working solution (2 mL) and 1mg/mL Hoehst 33342 (2 μl). Add the mixture solution (200 μl) into a well, and incubate at 37℃ for 30 minutes.

We recommend not to use a 5% CO2 incubator for fixed cell experiments.If incubation is done in a 5% CO2 incubator, the pH of the buffer may become acidic. Acidic pH results in higher background from the endogenous β-galactosidase activity and it would be difficult to distinguish between normal cells and senescent cells.

5. Remove the supernatant. Wash the cells with PBS twice.6. Observe the cells under a fluorescence microscope.

ReferenceSenescence induction in serum-free media1. Leontieva, O.V.; Blagosklonny.M.V. “DNA damaging agents and p53 do not cause senescence in quiescent cells, while consecutive re-activation of mTOR is associated with conversion to senescence.” Aging (Albany NY). 2010, 2, 924-935.Senescence induction in serum-contained media 2. Demaria, M.; O’Leary, M.N.; Chang, J., et al. “Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse.” Cancer Discov. 2017, 7, 165-176.

Are there any advices when observing the senescent cells?

Lipofuscin is a fluorescent pigment that accumulates in a variety of cell types with age. Lipofuscin consists of autofluorescent granules and may results in high background for fluorescence microscopy. In order to achieve accurate SA-β-gal activity assay in senescent cells, we recommend to prepare samples without SPiDER-βGal staining. Please compare fluorescence intensity of both cells with or without SPiDER-βGal staining.

++ For Flow Cytometry DetectionStep 1. Prepare senescent cells and non-senescent cells. Measure MFI (Mean Fluorescence Intensity) of samples below.[Senescent cells]Sample A: The cells stained with SPiDER-βGalSample B: The cells without SPiDER-βGal staining[Non-senescent cells]Sample A’: The cells stained with SPiDER-βGalSample B’: The cells without SPiDER-βGal staining

Step 2. Calculate SA-β-gal activity (senescent cells) with the following formulaSA-β-gal activity (senescent cells) = MFI of Sample A – MFI of Sample B

Step 3. Calculate SA-β-gal activity (non-senescent cells) with the following formulaSA-β-gal activity (non-senescent cells) = MFI of Sample A’ – MFI of Sample B’-Determine the SA-β-gal activity by comparing the SA-β-gal activity between senescent cells and non-senescent cells.-Change of SA-β-gal activity associated with senescence = (Value from Step 2- value from Step 3)

++ For MicroscopyStep 1. Prepare senescent cells without SPiDER-βGal staining and observe fluorescent image.Step 2. Adjust detection sensitivity in microscopy to reduce background autofluorescence of lipofuscin.Step 3. Observe fluorescent image of senescent cells and non-senescent cells under the settled condition in step 2.

1. T. Doura, M. Kamiya, F. Obata, Y. Yamaguchi, T. Y. Hiyama, T. Matsuda, A. Fukamizu, M. Noda, M. Miura, Y. Urano, “Detection of LacZ-Positive Cells in Living Tissue with Single-Cell Resolution.”, Angew Chem Int Ed Engl., 2016, doi: 10.1002/anie.2016033282. T. Sugizaki, S. Zhu, G. Guo, A. Matsumoto, J. Zhao, M. Endo, H. Horiguchi, J. Morinaga, Z. Tian, T. Kadomatsu, K. Miyata, H. Itoh & Y. Oike, “Treatment of diabetic mice with the SGLT2 inhibitor TA-1887 antagonizes diabetic cachexia and decreases mortality”, Nature Partner Journal:Aging and Mechanisms of Disease., doi:10.1038/s41514-017-0012-0.3. A. Park, I. Tsunoda and O. Yoshie, “Heat shock protein 27 promotes cell cycle progression by down-regulating E2F transcription factor 4 and retinoblastoma family protein p130”, J. Biol. Chem.., 2018, doi: 10.1074/jbc.RA118.003310 .4. R. Tanino, Y. Tsubata, N. Harashima, M. Harada and T. Isobe, “Novel drug-resistance mechanisms of pemetrexed-treated non-small cell lung cancer”, Oncotarget., 2018, 9, (24), 16807.5. Y. Kitahiro, A. Koike, A. Sonoki, M. Muto, K. Ozaki and M. Shibano. , “Anti-inflammatory activities of Ophiopogonis Radix on hydrogen peroxide-induced cellular senescence of normal human dermal fibroblasts.”, J Nat Med ., 2018, 72, 905.6. R. Uchida, Y. Saito, K. Nogami, Y. Kajiyama, Y. Suzuki, Y. Kawase, T. Nakaoka, T. Muramatsu, M. Kimura and H. Saito , “Epigenetic silencing of Lgr5 induces senescence of intestinal epithelial organoids during the process of aging”, NPJ Aging Mech Dis., 2018,doi:10.1038/s41514-018-0031-5.7. S. R. Kim, A. Eirin, X. Zhang, A. Lerman and L. O. Lerman, “Mitochondrial Protection Partly Mitigates Kidney Cellular Senescence in Swine Atherosclerotic Renal Artery Stenosis.”, Cell. Physiol. Biochem. ., 2019, 52, 617.8. Webber L, Yujra V, Vargas P, et al. “Interference with the bromodomain epigenome readers drives p21 expression and tumor senescence.”, Cancer Letters. 2019; 461: 10-20.9. H. Ise, K. Matsunaga, M. Shinohara and Y. Sakai, “Improved Isolation of Mesenchymal Stem Cells Based on Interactions between N-Acetylglucosamine-Bearing Polymers and Cell-Surface Vimentin “, Stem Cells Int ., 2019, 4341286, 13.10. Wang X, Qu M, Li J, et al. “Induction of Fibroblast Senescence During Mouse Corneal Wound Healing.”, Invest Ophthalmol Vis Sci. 2019; 60: 3669-3679.11. Y. Nakatani, H. Kiyonari and T. Kondo, “Ecrg4 deficiency extends the replicative capacity of neural stem cells in a Foxg1-dependent manner.”, Development., 2019, 146, (4), 18.12. Y. S. Ryu, K. A. Kang, M. J. Piao, M. J. Ahn, J. M. Yi, G. Bossis, Y. M. Hyun, C. O. Park and J. W. Hyun , “Particulate matter-induced senescence of skin keratinocytes involves oxidative stress-dependent epigenetic modifications”, Exp. Mol. Med. ., 2019, 51, 108.13. E. M. Angela Ibler, E. Mohamed, L. N. Kathryn, A. B. Natalia, F. E. K. Sherif and H. Daniel, “Typhoid toxin exhausts the RPA response to DNA replication stress driving senescence and Salmonella infection”, Nat Commun., 2019, 10, 4040

Dojindo,Cellstain钙黄绿素AM溶液/1/C396,Calcein-AM 与 Calcein 相比具有增强的疏水性

Calcein-AM 与 Calcein 相比具有增强的疏水性,因此很容易通过活细胞的细胞膜。 钙黄绿素-AM 渗入细胞质后,被酯酶水解成钙黄绿素,钙黄绿素留在细胞内(图 1)。 在其他试剂中,包括 BCECF-AM 和羧基荧光素二乙酸酯,Calcein-AM 是最适合用于染色活细胞的荧光探针,因为它的细胞毒性低。 钙黄绿素不抑制任何细胞功能,例如淋巴细胞的增殖或趋化性。 此外,使用钙黄绿素的活力测定是可靠的,并且与标准的 51Cr 释放测定具有良好的相关性。 calcein 的激发和发射波长分别为 490 nm 和 515 nm

Fig. 1 Cell staining mechanism

Staining Procedure1.Prepare 1 mM Calcein-AM solution with DMSO and dilute to prepare 1-50 μM Calcein-AM solution with PBS.a)2.Add Calcein-AM solution with 1/10 of the volume of cell culture medium to the cell culture.b)3.Incubate the cell at 37ºC for 15-30 min.4.Wash cells twice with PBS or an appropriate buffer.5.Observe the cells under a fluorescence microscope with 490 nm excitation and 515 nm emission filters.

a) If the Calcein-AM has difficulty loading into cells, use a detergent such as Pluronic F127.b) Or you may replace the culture medium with 1/10 concentration of Calcein-AM buffer solution.

1. K. McGinnes, et al., A Fluorescence NK Assay Using Flow Cytometry. J Immunol Methods. 1986;86:7-15.2. S. J. Morris, Real-time Multi-wavelength Fluorescence Imaging of Living Cells. BioTechniques. 1990;8:296-308.3. S. A. Weston, et al., New Fluorescent Dyes for Lymphocyte Migration Studies Analysis by Flow Cytometry and Fluorescent Microscopy. J Immunol Methods. 1990;133:87-97.4. D. M. Callewaert, et al., Characterization of Effector-Target Conjugates for Cloned Human Natural Killer and Human Lymphokine Activated Killer Cells by Flow Cytometry. Cytometry. 1991;12:666-676.5. H. Xie, et al., Intercellular Communication Through Gap Junctions Is Reduced in Senescent Cell. Biophys J. 1992;62:45-47.6. S. A. Weston, et al., Calcein: a Novel Marker for Lymphocytes Which Enter Lymph Nodes. Cytometry. 1992;13:739-749.7. X. M. Wang, et al., A New Microcellular Cytotoxicity Test Based on Calcein AM Release. Hum Immunol. 1993;37:264-270.8. N. G. Papadopoulos, et al., An Improved Fluorescence Assay for the Determination of Lymphocyte-Mediated Cytotoxicity Using Flow Cytometry. J Immunol Methods. 1994;177:101-111. 9. L. S. D. Clerck, et al., Use of Fluorescent Dyes in the Determination of Adherence of Human Leucocytes to Endothelial Cells and the Effects of Fluorochromes on Cellular Function. J Immunol Methods. 1994;172:115-124.10. H. Ohata, et al., Confocal Imaging Analysis of ATP-Induced Ca2+ Response in Individual Endothelial Cells of the Artery in Situ. Am J Physiol. 1997;272:C1980-C1987.

Dojindo,ES/iPS差异化监测工具包/for/ES01

发现培养基中的一种分泌蛋白是 ES 和 iPS 向内胚层细胞转化水平的标志物。 (发表于:H. Iwashita, S. Kume, PloS ONE., 2013, 8(5): e64291)细胞培养上清液中该标记蛋白的量通过 ELISA 测定。 它可用于监测内胚层细胞从 ES/iPS 细胞分化的效率。 由于该试剂盒专为 96 孔微孔板格式而设计,因此适用于多种样品测量,例如筛选诱导物以进行分化或优化培养条件。

RT-PCR Measurement of each Marker :The secretory protein has a good correlation with Sox 17 and Foxa2 which are commonly used proteins as markers of endoderm differentiation.


Comparison with Conventional Techniques :

Dojindo Kit PCR Immunostaining Flow Cytometry
Procedure 3 hours > 7 hours 1-2 days > 4 hours
Sample Supernatant mRNA Whole cells Whole cells
ContinuousCell Culture Possible Impossible Impossible Impossible
Marker Marker Protein Sox17, Foxa2 Sox17, Foxa2 CXCR4

Measurement of Procedure :

mmunocytochemical(ICC) Analysis:[Sample: Murine ES cell]

Most of the Foxa2 positive cells are co-stained with the marker protein.The three images in the upper row were obtained from conventional ICC analysis. Normally, Foxa2 and Sox17 double positive cells are defined as differentiated into endodermal cells.


Differentiation Monitoring by ICC and ELISA:[Sample: Human iPS cell]

Human iPS 253G1 cells were differentiated into the definitive endoderm. They were being monitored with ELISA assay to measure the amount of marker protein secreted or ICC analysis for Sox17 and Foxa2 double positive cells.

The two bar graphs show the correlation of the amount of secreted protein with the amount of Sox17 and Foxa2 double positive cells from day 1 to day 5 (D1 to D5) of differentiation.

Dojindo,Lipi系列脂滴检测探头/Lipi Deep/LD01

脂滴 (LD) 由中性脂质组成,例如三酰基甘油和胆固醇酯,它们被磷脂单层包围,并且无处不在,不仅在脂肪细胞中 1)。 LDs 最初被认为是一种脂质储存单元,直到最近的一项研究表明 LDs 在调节脂质代谢、自噬2) 和细胞衰老3) 中发挥重要作用。 因此,LDs 作为阐明其形成、生长、融合和收缩机制的重要工具而备受关注。

1) T. Fujimoto et al., “Lipid droplets: a classic organelle with new outfits.” Histochem Cell Biol., 2008, 130(2), 263.2) R. Singh et al., “Autophagy regulates lipid metabolism.” Nature, 2009, 458(7242), 1131.3) M. Yokoyama et al., “Inhibition of endothelial p53 improves metabolic abnormalities related to dietary obesity.” Cell Reports, 2014, 7(5), 1691.

For more information on Lipi-series and examples, please refer to the publication below:

4) Tatenaka, Y. et al., “Monitoring Lipid Droplet Dynamics in Living Cells by Using Fluorescent Probes” Biochemistry.“, 2019, 58(6), 499-503.Notes: Lipi-Series is Patent Pending.

 


Oleic acid treated HeLa cells with Lipi Product Series

<Staining Condition>A medium that contained oleic acid (200 μmol/l) was added and incubated overnight. Then, the supernatant was removed and the cells were washed with PBS. Each Lipi product series (1 μmol/l) was added and the cells were incubated for 15 minutes.

<Detection Condition>Lipi-Blue: Ex. 405 nm / Em. 450 – 500 nmLipi-Green: Ex. 488 nm / Em. 500 – 550 nmLipi-Red: Ex. 561 nm / Em. 565 – 650 nmLipi-Deep Red: Ex.640 nm / Em.650-700 nm


Reagent Comparison

 

*Leaks in GFP filter


High Intracellular RetentivityLive HepG2 cells were stained with each of the Lipi products, Nile Red, and Reagent B.

Lipi-Blue and Lipi-Green had higher retention in cells after 24 hours post staining than Lipi-Red, Nile Red, and Reagent B.


High Correlation with Antibody Detection Method: Lipi-Blue (LD01)After fixing HepG2 with 4% PFA, cells are stained with 100 nmol/l Lipi-Blue. Then, Adipophilin (ADFP) expressed on lipid-droplet membrane was labeled with anti-ADFP antibody

Scale Bar: 20 μm<Detection Condition>Lipi-Blue: Ex. 405 nm / Em. 450 – 500 nmAnti-ADFP antibody (Alexa Fluor® 647): Ex. 640 nm / Em. 650 – 700 nm


High Selectivity toward Lipid DropletLive HeLa cells were treated with Oleic acid and were stained with 100 nmol/l Lipi-Blue and 100 nmol/l Nile Red. Nile red had high background due to the limit in selectivity toward lipid droplets.<Detection Condition>Lipi-Blue: Ex. 405 nm / Em. 450 -500 nmLipi-Green: Ex. 488 nm / Em. 500 – 550 nmLipi-Red: Ex. 561 nm / Em. 565 – 650 nmLipi-Deep Red: Ex. 640 / Em. 650 – 700 nmNile Red: Ex. 561 nm / Em. 565 – 650 nm


Filter Leakage Rate (Lipi-Red vs Nile Red)

HepG2 cells were stained with Lipi-Red and Nile Red. Lipi-Red was imaged with Green excitation (G), but not Blue excitation (B). However, Nile Red was imaged in both filter. Lipi-Red is preferable for multi-staining.

 


Multiple Staining: Lipi-Deep Red (Purple) co-staining with GFP fluorescence (green) in HeLa cells

After adding Lipi-Deep Red (0.1 μmol/l) to the Arf4-GFP expressed Hela cells and the cells were incubated for 30 minutes, the cells were treated with 4% PFA (PBS) to fix, and washed with PBS three times. Fluorescent imaging was conducted by confocal microscopy.

<Detection Condition>GFP: Ex/Em=488/400-552 nmLDs:  Ex/Em=640/630-700 nm

Multiple Staining:  Lipi-Deep Red (RED) co-staining with GFP fluorescence (green) in HeLa cells

*Data was kindly provided by Dr. G. Belov, at University of Maryland, College Park

 

Lipi-Blue co-staining with GFP and RFP fluorescence in hMGEC (Multiple Staining)

In the following article, hMGEC treated with rosiglitazone (Rosi) was co-stained with tandem RFP-GFP-tagged LC3B and Lipi-Blue to observe autophagosome /autophagolysosome and lipid droplets. It was observed lipid droplets in hMGEC treated with Rosi for 4 days and 14 days was accumulated. For details about the experiment, please visit the reference below.

Kim, S. et al., “Eicosapentaenoic acid (EPA) activates PPARγ signaling leading to cell cycle exit, lipid accumulation, and autophagy in human meibomian gland epithelial cells (hMGEC)“, The Ocular Surface, 2020, 18(3), 427-437.


Adipocyte with Lipi Series

Lipid droplets in adipocyte were clearly detected by staining adipocytes, derived from 3T3-L1 preadipocytes, with Lipi-Series.

 

<Protocol>1. HeLa cells were seeded on a μ-slide 8-well plate and cultured at 37 ℃ overnight in a 5% CO2 incubator.2. A conventional method was used to induce adipocyte differentiation.3. The supernatant was removed and the cells were washed twice with DMEM (25 mmol/l glucose, 10% FBS, phenol red free).5. The Lipi-series working solution (in DMEM (25 mmol/l glucose, 10% FBS, phenol red free)) was added and the cells were incubated at 37 ℃ for 24 hours in a 5% CO2 incubator.6. The cells were observed using a fluorescence microscope.

*Dye Concentration: 2.5 µmol/L each.


Mouse liver adipose tissue (Frozen section) with Lipi Series

After adding Lipi series to the 4% PFA (PBS) fixed mouse liver adipose tissue and the tissue were incubated for overnight, and washed with PBS. Fluorescent imaging was observed by fluorescence microscopy.

 


Quantitative analysisChanges in lipid droplets were examined after the addition of oleic acid or Triacsin C (acyl-CoA synthetase inhibitor) to the HepG2 cell culture medium. For analysis, the number and total area of lipid droplets per cell were computed from the images acquired with CQ1, a confocal quantitative image cytometer (Yokogawa Electric Corporation).

<Imaging of lipid droplets and cell nuclei>

CQ1 captured images of lipid droplets with a 447/60 nm bandpass filter and cell nuclei with a 525/50 nm bandpass filter. Lipid droplets and cell nuclei were individually identified and computed the number and total area by using the CellPathfinder analysis software.Imaging conditions:Plate: 96 well plate, objective lens: x 20excitation: 405 nm (Lipi-Blue), blue/488 nm (SYBR Green), Green

<Analysis by the number and total area of lipid droplets>

Based on the detected data of cell nuclei and lipid droplets, the number and total area of lipid droplets per cell computed were shown in the graphs below. Compared to the control value, the number and total area of lipid droplets per cell were increased 7-10 times by the addition of oleic acid, but the addition of Triacsin C inhibited lipid droplet formation and showed a 50-60% decrease.Experimental conditionsHepG2 cells (1 x 103 cells) were disseminated on a 96-well plate and incubated overnight. After the culture supernatant was removed, the cells treated with DMEM plus FBS only (control), DMEM plus FBS and 200 μmol/L oleic acid (Oleic acid), and DMEM plus FBS and 5 μmol/L Triacsin C (Triacsin C) were incubated overnight. Cells were then washed twice with PBS buffer, fixed with 4% PFA for 5 minutes at room temperature, and washed twice with PBS buffer again. Finally, cells were stained in the dark for 2 hours at room temperature with 0.5 μmol/L Lipi-Blue working solution, and quantitative analysis was performed through CQ1.


Related Product Information

Function Product Code Product Size
Imaging LD01 Lipi-Blue 10 nmol
LD02 Lipi-Green 10 nmol
LD03 Lipi-Red 100 nmol
LD04 Lipi-Deep Red 10 nmol
Quantification (Plate Reader, FCM) LD05 Lipi Droplet Assay Kit-Blue 1 set
LD06 Lipi Droplet Assay Kit-Deep Red 1 set

Recommended Filter: Wavelength for Excitation and Emission

What should I do if the fluorescence is not detected?
1. Filter conditionsCheck the fluorescence spectrum of the dye on the product HP and confirm if the excitation / emission wavelength for your filter is suitable.2. Concentration of Lipi probe working solutionOptimize the concentration within the following range:Lipi-Blue, Lipi-Green: 0.1-0.5 μmol / LLipi-Red: 1-5 μmol / L* If fluorescence is not detected even under the above conditions, prepare a higher concentration of the working solution.Lipi-Blue & Lipi-Green: 1-2 μmol / LLipi-Red: 10 – 20 μmol / L3. Incubation timeIncubate for 1-2 hours after adding Lipi probe working solution.

4. Assay conditions (fixed cells)Please refer to Q2.

5. OtherDepending on the cell type, lipid droplets can be smaller than usual and it may be too difficult to observe.If that is the case, please observe under a high magnification microscope or prepare for positive control with oleic acid treated cells.

Can I use Lipi-dye for fixed cells?
Yes, Lipi-dye can be used for fixed cells.* Please use paraformaldehyde (PFA) for fixation. Alcohol fixation is not recommended because it may affect the structure of lipid droplets.

* Depending on the cell, it may not be stained or weakened in sensitivity due to fixed conditions before and after staining. In that case, please consider fixed conditions.○ Fix cells after staining  <HepG2 cells>1. Remove the medium and wash twice with PBS.2. Add Lipi-dye Working solution(in PBS) in the cells and incubated at 37 ℃ for 15 minutes.3. Remove the supernatant and wash twice with PBS.4. Add 2 ml of 4% paraformaldehyde (PFA) /PBS solution to the cells and incubate at room temperature for 5 minutes.5. Remove the supernatant and wash with PBS.6. Observe under a fluorescence microscope.

○ Fix cells before staining <HeLa cell>1. Remove the medium and wash twice with PBS.2. Add 2 ml of 4% paraformaldehyde (PFA) /PBS solution to the cells and incubate at room temperature for 5 minutes.3. Remove the supernatant and wash twice with PBS.4. Add Lipi-dye Working solution(in PBS) in the cells and incubated at 37 ℃ for 15 minutes.5. Remove the supernatant and wash with PBS.6. Observe under a fluorescence microscope.

Can I use Lipi-dye for frozen tissue?
Yes, Lipi-dye can be used for frozen tissue.* Please use paraformaldehyde (PFA) for fixation. Alcohol fixation is not recommended because it may affect the structure of lipid droplets.

Mouse liver adipose tissue <Frozen section>1. Add 4% paraformaldehyde (PFA)/PBS solution to the mouse liver adipose tissue (Frozen section) and incubate at room temperature for 5 minutes.2. Remove the supernatant and wash with PBS, and add the Lipi-series Working solution (in PBS) in the cells and incubated at 4 ℃ for overnight.3. Remove the supernatant and wash with PBS, observe under a fluorescence microscope.

Are there any information about filter used in co-staining?
Yes, please refer to the table below and choose the filter.
Preparing a stock solution of oleic acidRequired Reagents:・BSA (bovine serum albumin)・Oleic acid・0.1 mol/L Tris-HCl (pH 8.0)Procedure:(1) Dissolve 0.14 g/mL BSA in 0.1 mol/L Tris-HCl (pH 8.0).(2) Add 4 mmol/L oleic acid to a disposable centrifuge tube.(3) Add BSA solution (prepared in step 1).(4) Cap the tube and mix on a rotary shaker (Be sure the solution is transparent, indicating that oleic acid has been conjugated to BSA).(4) Filter the solution prepared above (step 4) using 0.22μm filter membranes.(5) Store oleic acid stock solution at 4˚C.*Use the appropriate amount of oleic acid stock solution for culture medium to prepare working solution. *Oleic acid working solution cannot be stored. Please prepare the working solution immediately before usage.Inducing lipid droplets(1) Incubate cells for 24 hours at 37˚C in a 5% CO2 atmosphere.(2) Add 200 µmol/L working solution (prepared from oleic acid stock solution) to culture medium and incubate for further 24 hours.

Dojindo,抗硝基鸟苷多克隆抗体/50/AB01

8-Nitroguanosine 是 DNA 和 RNA 的硝化碱基。它是由一氧化氮和超氧阴离子自由基生成的过氧亚硝酸盐形成的。已知炎症产生的大量一氧化氮分子和超氧阴离子会引起鸟苷的硝化。由于化学修饰的核苷酸会在 DNA 复制过程中引起突变,因此 8-硝基鸟苷被认为是与突变和癌症相关的 DNA 损伤的标志之一。由于其非常高的特异性,单克隆抗体 NO2G52 可识别 8-硝基鸟嘌呤和 8-硝基鸟苷,但不与正常核苷酸碱基、8-羟基鸟嘌呤、8-羟基脱氧鸟苷、3-硝基酪氨酸、黄嘌呤或 2-硝基咪唑发生交叉反应。图。1)。 NO2G52 的特异性通过使用 8-硝基鸟苷-BSA 包被板的竞争性 ELISA 确定。如下图所示,NO2G52对8-硝基鸟嘌呤和8-硝基鸟苷具有非常高的亲和力,与8-溴鸟苷、8-溴鸟嘌呤和8-氯鸟嘌呤有轻微的交叉反应。抗硝基鸟苷多克隆抗体也可识别 8-硝基鸟苷和 8-硝基鸟苷,但它不与正常的鸟苷、鸟嘌呤、8-羟基鸟嘌呤或 3-硝基酪氨酸发生交叉反应。由于该抗体是使用兔制备的,因此可用于小鼠或大鼠等啮齿动物组织的免疫组织染色。

Specificity of Anti 8-Nitroguanosine monoclonal antibody

Tissue Staining with Anti-Nitroguanosine AntibodyA) Tissue section (8 days postinfection, influenza) stained with Anti-Nitroguanosine Antibody.B) The same section viewed using a confocal laser scanning microscope (Fluoroview FV300, Olympus, Nagano, Japan). Strong fluorescence, due to emission of Vector red, is evident in the cytosol.

1. T. Akaike, et al., 8-nitroguanosine formation in viral pneumonia and its implication for pathogenesis, PNAS. 2003;100:685-690.2. J. Yoshitake, et al., Nitric oxide as an endogenous mutagen for Sendai virus without antiviral activity. J Virol. 2004;78:8709-8719.3. T. Sawa, et al., Protein S-guanylation by the biological signal 8-nitroguanosine 3 E5 Ecyclic monophosphate. Nat Chem Biol. 2007;3:727-735.4. M. H. Zaki, et al., Cytoprotective function of heme oxygenase 1 induced by a nitrated cyclic nucleotide formed during murine salmonellosis. J Immunol. 2009;182:3746-3756.5. Y. Terasaki, et al., Guanine nitration in idiopathic pulmonary fibrosis and its implication for carcinogenesis. Am J Respir Crit Care Med. 2006;174:665-673.6. T. Sawa, et al., Analysis of urinary 8-nitroguanine, a marker of nitrative nucleic acid damage, by high-performance liquid chromatography-electrochemical detection coupled with immunoaffinity purification: association with cigarette smoking. Free Radic Biol Med. 2006;40:711-720.

Dojindo,生物膜活力检测试剂盒/B603,Biofilm Viability Assay Kit/100/B603

生物膜是由微生物和细胞外多糖组成的生物聚集体,可以存在于许多环境中。 生物膜中的微生物对抗生素具有很强的抗药性; 因此,对具有抗生物膜活性的药物和食品成分的研究是一个不断发展的领域。我们的检测试剂盒用于定量测量生物膜形成/抑制生物膜形成(Biofilm Formation Assay Kit)和抗生物膜药物功效(Biofilm Viability Assay Kit) 采用了一种协议,该协议旨在使用来自生物膜形成的钉板。 我们的检测试剂盒将所有必要的成分组合到每个包装中。

Feature 1: Measurement time can be significantly shortened.In existing methods, biofilms are formed on the bottom of the well of a microplate, and additional work is required to change microbial culture media and wash sample several times before and after staining. However, our assay kits allow you to form biofilms on the pegs attached to the plate’s lid. Media change and staining process can be done simply by transferring the lid; therefore, our assay kits are very easy to use.

Feature 2: Our assay kits can reduce measurement variation.In existing methods, biofilm formation occurs on the bottom of the well of a microplate, which made biofilm easier to peel off because of the processes such as washing. This causes measurement variation, and this measurement variation was an issue for the quantification of biofilm. Our assay kits allow you to form biofilms on the pegs attached to the plate’s lid and make it possible to avoid peeling off biofilm which occurs during the process of the formation.

Two different types of assay kits for different purposes.We offer two types of assay kits that measure the amount of biofilm formation or the metabolic activities of live microorganisms within biofilms by using the same measurement method. You can select the one that best suits your needs.

Selection of 2 types of assay kits

*Conditions on biofilm formation vary according to microbial species and strains. When you need to examine these conditions, we first recommend you use the Biofilm Formation Assay Kit.*The Biofilm Formation Assay Kit is a product developed together with Fukuoka Industrial Technology Center.

Procedure

Example of measurementIndicators for drug-mediated inhibition of biofilm formation or antimicrobial effect of biofilms include MBIC (minimum biofilm inhibitory concentrations) and MBEC (minimum biofilm eradication concentrations). MBIC and MBEC of S. aureus were measured using each kit.

[How to use – Quick Tutorial]
Q1. What is the incubation time after addition of staining reagent?
A1. Staining time differs depending on microbial species or metabolic activities.In the first experiment, we recommend about 24 hours of incubation, along with the constant checking of absorbance. Examples of using S.aureus and S.mutans are shown in Figures 2 and 3 in the technical manual. Please refer to these examples.
Q2. Is it possible to use filters other than a 450 nm filter?
A2. You can use filters ranged from 440 to 480 nm for measurement.
Q3. When I evaluate inhibition of biofilm formation and anti-biofilm drug efficacy, what is the approximate amount of biofilm formation required for experiment?

A3. In the Biofilm Formation Assay Kit (Product code: B601), please consider the amount of biofilm formation as a rough indication when a value of absorbance (590 nm) for crystal violet solution obtained after the final step is greater than 0.5.

Q4. What types of microbial species have been tested?

A4. Dojindo Laboratories has evaluated the following microbial species that formed biofilms using the Biofilm Formation Assay Kit (Product code: B601) and the Biofilm Viability Assay Kit (this product).– Staphylococcus aureus– Pseudomonas aeruginosa– Escherichia coli– Streptococcus mutans– Porphyromonas gingivalisPlease refer to the technical manual, in terms of culture conditions for the above microbial species, experimental examples, etc.

Dojindo,Coelenterazine WS/1/C397

水母发光蛋白是一种含有腔肠素作为发光化合物的发光蛋白。 由于水母发光蛋白通过钙共轭发光,因此可用于细胞内钙离子检测。 但腔肠素在生理条件下水溶性较差,会吸附在细胞膜上。 Dojindo 的 Coelenterazine-WS 是腔肠素的 β-环糊精复合物,在中性 pH 值下具有显着提高的水溶性。

1. K. Teranishi, et al., Solubilizing Coelenterazine in Water with Hydroxypropyl-β-cyclodextrin. Biosci Biotech Biochem. 1997;61:1219-1220.

Dojindo,FerroOrange/24/F374,FerroOrange 是一种新型荧光探针

铁是生物体内含量最多的过渡金属元素,参与各种生理活动。 最近,活细胞中的游离铁引起了人们的关注,因为它的高反应性可能与细胞损伤或死亡有关。 游离铁以其稳定的氧化还原状态存在,即亚铁离子(Fe2+)和铁离子(Fe3+))。 在活细胞中,理解 Fe2+) 的行为被认为比理解 Fe3+) 的行为更重要,因为细胞内的还原环境、金属转运蛋白和 Fe2+) 的水溶性。 2012 年,Ferroptosis 被提出为新的细胞死亡之一。 铁死亡被研究为由铁离子依赖性过氧化脂质的积累引起的非凋亡性细胞死亡。 FerroOrange 是一种新型荧光探针,可对细胞内 Fe2+ 进行活细胞荧光成像,用于铁死亡研究。

Ferrous ion (Fe2+) Detection

FerroOrange (F374) Mito-FerroGreen (M489)
Localization Intracellular Mitochondria
Fluorescent Property λex: 543 nm, λem: 580 nm λex: 505 nm, λem: 535 nm
Instrument (filter) Fluorescence microscope,plate reader (Cy3) Fluorescence microscope(FITC, GFP)
Sample Live cell Live Cell
The number of assays 1 tube (24 µg)17 assays at 35 mm dish(final concentration 1 µmol/L) 1 set (50 µg x 2)10 assays at 35 mm dish(final concentration 5 µmol/L)

Experimental ExampleHeLa cells treated with chelator of iron 2,2′-bipyridyl (Bpy) (100 μmol/L) or Ammonium iron (II) sulfate (100 μmol/L) were prepared. The change of intracellular Fe2+in HeLa cells was detected by the FerroOrange.

<Fluorescence Microscope>

Ex/Em = 561 nm/570-620 nm, Scale bars 20 μmLeft ControlMiddle Ammonium iron (II) sulfate and 2,2′-Bipyridyl (Bpy) treatedRight Ammonium iron (II) sulfate treatedThe fluorescence intensity of FerroOrange was increased in HeLa cells treated with Ammonium iron (II) sulfate compared with the findings in untreated cells; conversely, its fluorescence intensity was decreased in cells treated with Bpy.

<Plate Reader Assay>Ex/Em = 543 nm/ 580 nmLeft ControlMiddle Ammonium iron (II) sulfate and 2,2′-Bipyridyl (Bpy) treatedRight Ammonium iron (II) sulfate treatedThe change of intracellular Fe2+in HeLa cells was quantified by the FerroOrange.

<Metal Ion Selectivity>Ex/Em = 543 nm/ 580 nm2 μL of 1 mmol/L FerroOrange and 2 μL of 10 mmol/L from each metal were added to 1 mL of 50 mmol/L HEPES Buffer (pH7.4). The fluorescence intensity was measured after the reaction, for 1hr, at room temperature.


Applications

<High-throughput methods for monitoring subcellular labile Fe2+>

FerroOrange is ready to use for a 96-well-plate-based high-content imaging of labile Fe(II) in living cells. In the following article, Dr. Hirayama etc. were able to conduct high-throughput screening of a chemical library containing 3399 compounds.

High-Throughput Screening for the Discovery of Iron Homeostasis Modulators Using an Extremely Sensitive Fluorescent Probe

*FerroOrange is mentioned as “RhoNox-4” in the reference.*FerroOrange was commercialized under the advisory of Dr. Hideko Nagasawa and Dr. Tasuku Hirayama (Gifu Pharmaceutical University).

 

<Ferrous ion (Fe2+) detection in mouse liver in ferroptosis research>

In the following article, ferrous ions (Fe2+) were detected in mouse livers using FerroOrange (Ferroptosis research).*mice were fed on methionine- choline deficient dietFor details about the experiment, please visit the reference below.

Targeting Ferroptosis Alleviates Methionine-Choline Deficient (MCD)-diet Induced NASH by Suppressing Liver Lipotoxicity

 


Co-staining with Each Organelle Dye ReagentFerroOrange was co-stained with each organelle’s dye reagents.HeLa cells were stained with organelle’s dye and washed.Then, FerroOrange was added to the cells and cells were observed under the fluorescent microscope.

 

Co-staining with ER Staining Dye<Detection Condition>FerroOrange: Ex. 561 nm, Em. 570-620 nmER Tracker Green (ER Dye): Ex. 488 nm, Em. 510-555 nmScale bars: 10 µm

 

Co-staining with Mitochondrial staining Dye<Detection Condition>FerroOrange: Ex. 561 nm, Em. 570-620 nmMitoBright Deep Red (Mitochondrial Dye): Ex. 640 nm, Em. 650-700 nmScale bars: 10 µm

 

Co-staining with Golgi Complex Staining Dye<Detection Condition>FerroOrange: Ex. 561 nm, Em. 570-620 nmBODIPY FL (Golgi Complex Staining Dye): Ex. 488 nm, Em. 510-555 nmScale bars: 10 µm

 


Excitation and Emission Spectra

 

No. Sample Instruments Publications
1) Cell Fluorescence K. Tomita, M. Fukumoto, K. Itoh, Y. Kuwahara, K. Igarashi, T. Nagasawa, M. Suzuki, A. Kurimasa and T. Sato, “MiR-7-5p is a key factor that controls radioresistance via intracellular Fe2+ content in clinically relevant radioresistant cells.”, Biochem Biophys Res Commun.., 2019,doi: 10.1016/j.bbrc.2019.08.117.
2) Cell Fluorescence Y. Wang and M. Tang, “PM2.5 induces ferroptosis in human endothelial cells through iron overload and redox imbalance”, Environ. Pollut.2019, 264, doi: 10.1016/j.envpol.2019.07.105.
3) Cell Fluorescence S Guo, X Yao, Q Jiang, K Wang, Y Zhang, H. Peng, J. Tang and W. Yang , “Dihydroartemisinin-Loaded Magnetic Nanoparticles for Enhanced Chemodynamic Therapy”, Front Pharmacol 2020, 11, 226.
4) Cell(293T) Fluorescencemicroscope R. A. Weber, F. S. Yen, S.P.V. Nicholson, H. Alwaaseem, E.C. Bayraktar,M. Alam, R. C. Timson, K. La, M. Abu-Remaileh, H. Molina and K. Birsoy, “Maintaining Iron Homeostasis Is the Key Role of Lysosomal Acidity for Cell Proliferation”, Mol. Cell2020, 77, 1-11.
5) Cell Fluorescence X. Li, T. Wang, X. Huang, Y. Li, T. Sun, S. Zang, K. Guan, Y. Xiong, J. Liu and H. Yuan , “Targeting ferroptosis alleviates methionine‐choline deficient (MCD)‐diet induced NASH by suppressing liver lipotoxicity”, Liver Int., 2020,  doi:10.1111/liv.14428.
6) Cell(HepG2) FluorescencemicroscopeMicroplate readerImaging cytometer T. Hirayama, M. Niwa, S. Hirosawa and H. Nagasawa, “High-Throughput Screening for the Discovery of Iron Homeostasis Modulators Using an Extremely Sensitive Fluorescent Probe”, ACS Sens., 2020,doi: 10.1021/acssensors.0c01445.Note: FerroOrange is mentioned as “RhoNox-4” in the reference.

Please refer to the following experimental example:

<Sample>A: No dye added (HeLa cells only)B: Bpy (2,2‘-bipyridine) treated HeLa cells

<Method>1. Add 100μL HeLa cell suspension to each well of 96 well plate (black with clear bottom) making the final concentration 10,000 cells/well. Incubate overnight in the 5% CO2 at 37 ℃.2. Wash Sample C with 100 μL MEM (no FBS) media three times3. Add 100 μL ammonium iron sulfate (II)/MEM (no FBS) solution (final concentration: 100 μmol/L) to Sample C’s wells. Incubate for 30 minutes in the 5% CO2 at 37 ℃.4. Wash cells with 100 μL HBSS three times

6. Measure the fluorescent intensity (Ex. 543 nm, Em. 580nm) using a fluorescence microplate reader.

Quantitative Analysis by Flow Cytometer・FerroOrange may affect staining intensity, depending on cell density and cell type.*Please refer to Q&A “Is it necessary to wash cells after staining?”.・Furthermore, a dye may leak out of the cells, depending on a medium change and a wash.・For these reasons, you need to optimize when performing quantitative flow cytometry. 

<Usage Example>1. HeLa cells (1 x105 cells/well) in MEM (10% fetal bovine serum, 1% penicillin-streptomycin) were seeded on a 6 well plate and were cultured at 37oC in a 5% CO2 incubator overnight.2. The cells were washed with serum-free medium (2 mL) three times. Then, serum-free medium (1 mL) was added to the cells.3. 10 mmol/L Ammonium iron (II) sulfate (10 μL) was added to wells (The final concentration: 100 μmol/L).4. To mix Ammonium iron(II) sulfate and serum-free medium, the entire medium was pipetted up from wells and then immediately pipetted back one time.5. The cells were incubated for 20 min in a 37oC incubator equilibrated with 95% air and 5% CO2, and the cells were washed with HBSS (1 mL) three times.6. After trypsinization (250 µL), stop the reaction with serum medium (1 mL), 1.25 ml of the cell suspension was transferred to a microcentrifuge tube.7. The cells suspension was centrifuged at 1,500 rpm for 3 minutes.8. The supernatant was discarded and HBSS (1 mL) was added to the microcentrifuge tube and suspended by pipetting.9. The cells suspension was centrifuged at 1,500 rpm for 3 minutes and the supernatant was discarded.10. 1 μmol/L FerroOrange in MEM (serum-free medium) (300 μL) was added to the cells.11. The cells were incubated for 15 -30 min in a 37oC incubator equilibrated with 95% air and 5% CO2.12. The stained cells were passed through a cell strainer and analyze samples using a flow cytometer.

<Important Points>

1. FerroOrange leaks into the extracellular space due to washing cells after staining; therefore, we suggest you measure cells immediately after staining (Non wash).

2.  We recommend you add equal volumes of dye solutions, because fluorescence intensity can sometimes vary in a dye solution volume-dependent manner.

3. To verify experimental conditions for detecting Fe(II), we recommend you prepare a sample containing ammonium iron (II) sulfate and then observe changes in the fluorescence intensity of FerroOrange.

Are there any tips for successful assay?
1. Please do not change the media after adding the FerroOrange. By changing the media, the FerroOrange dye can leak out of cells.2. For data reliability, we recommend preparing Bpy (2,2‘-bipyridine) or ammonium iron sulfate (II) treated cells as the control for comparison with FerroOrange data.3. If the cell samples have difficulty in staining, please increase the concentration of FerroOrange working solution 1 μmol/L higher than the recommended concentration. We recommend 1-5μmol/L.
How can I use FerroOrange with a plate reader?
Please refer to the following experimental example:<Sample>A: No dye added (HeLa cells only)B: Bpy (2,2‘-bipyridine) treated HeLa cellsC: Ammonium iron sulfate (II) treated HeLa cells

<Method>1. Add 100μL HeLa cell suspension to each well of 96 well plate (black with clear bottom) making the final concentration 10,000 cells/well. Incubate overnight in the 5% CO2 at 37 ℃.2. Wash Sample C with 100 μL MEM (no FBS) media three times3. Add 100 μL ammonium iron sulfate (II)/MEM (no FBS) solution (final concentration: 100 μmol/L) to Sample C’s wells. Incubate for 30 minutes in the 5% CO2 at 37 ℃.4. Wash cells with 100 μL HBSS three times5. Add 100 μL of 1 μmol/L FerroOrange working solution to Sample A and Sample C’s wells. Add 100 μL of HBSS solution containing FerroOrange (final concentration: 1 μmol/L) and Bpy (final concentration: 100 μmol/L) to Sample B’s wells. Incubate for 30 minutes in the 5% CO2 at 37 ℃.6. Measure the fluorescent intensity (Ex. 543 nm, Em. 580nm) using a fluorescence microplate reader.

Is it necessary to wash cells after staining?
We recommend you not to wash them because this step may induce leakage of FerroOrange from the cells.It has been confirmed that the amount of FerroOrange leakage differs depending on cell density and cell type. 

What is the recommended filter?
Excitation: 530-565 nm; Emission: 570-620 nm

Dojindo,Cellstain-Hoechst 33258溶液/1/H341,Hoechst 染料具有细胞膜渗透性

Hoechst 染料具有细胞膜渗透性,可将 DNA 染色以发出强烈的蓝色荧光。 它们与多聚-AT 序列丰富区域的小沟中的 DNA 结合。 Hoechst 33342 和 Hoechst 33258 都是水溶性的,在水溶液中稳定。 Hoechst-DNA 复合物的激发和发射波长分别为 350 nm 和 460 nm。
Staining Procedure1.Prepare 10-50 μM Hoechst dye solution with PBS or an appropriate buffer.a)2.Add Hoechst dye solution with 1/10 of the volume of cell culture medium to the cell culture.b)3.Incubate the cell at 37ºC for 10-20 min.4.Wash cells twice with PBS or an appropriate buffer.5.Observe the cells under a fluorescence microscope with 350 nm excitation and 460 nm emission filters.a) Since Hoechst dyes may be carcinogenic, extreme care is necessary during handling.b) Or you may replace the culture medium with 1/10 concentration of Hoechst dye buffer solution.

1. M. J. Lydon, et al., Vital DNA Staining and Cell Sorting by Flow Microfluorometry. J Cell Physiol. 1980;102:175-181.2. M. Sriram, et al., Structural Consequences of a Carcinogenic Alkylation Lesion on DNA: Effect of O6-ethylguanine on the Molecular Structure of the d(CGC[e6G]AATTCGCG)-netropsin Complex. Biochemistry. 1992;31:11823-11834.3. Y. Tadokoro, et al., Characterization of Histone H2A.X Expression in Testis and Specific Labeling of Germ Cells at the Commitment Stage of Meiosis with Histone H2A.X Promoter-Enhanced Green Fluorescent Protein Transgene. Biol Reprod. 2003;69:1325-1329.4. F. Wada, et al., Analyses of Expression and Localization of Two Mammalian-Type Transglutaminases in Physarum polycephalum, an Acellular Slime Mold. J Biochem. 2004;136:665-672.5. T. Ohara, et al., FoSTUA, Encoding a Basic Helix-Loop-Helix Protein, Differentially Regulates Development of Three Kinds of Asexual Spores, Macroconidia, Microconidia, and Chlamydospores, in the Fungal Plant Pathogen Fusarium oxysporum. Eukaryot Cell. 2004;3:1412-1422.

Dojindo,Cellstain-DAPI/1/D212,DAPI 是一种 AT 序列特异性 DNA 嵌入剂

DAPI 是一种 AT 序列特异性 DNA 嵌入剂,它像 Hoechst 染料一样在双螺旋的小沟处附着在 DNA 上。 DAPI 不能透过活细胞膜,但它会通过受干扰的细胞膜对细胞核进行染色。 DAPI 具有较高的光漂白耐受水平。 DAPI 用于检测酵母中的线粒体 DNA、叶绿体 DNA、病毒 DNA、支原体 DNA 和染色体 DNA。 DAPI-DNA 复合物的激发和发射波长分别为 360 nm 和 460 nm。

Staining Procedure1.Prepare 10-50 μM DAPI solution with PBS or an appropriate buffer.a)2.Add DAPI solution with 1/10 of the volume of cell culture medium to the cell culture.b)3.Incubate the cell at 37oC for 10-20 min.4.Wash cells twice with PBS or an appropriate buffer.5.Observe the cells using a fluorescence microscope with 360 nm excitation and 460 nm emission filters.

a) Since DAPI may be carcinogenic, extreme care is necessary during handling.b) Or you may replace the culture medium with 1/10 concentration of DAPI buffer solution.

1. W. Schnedl, et al., DIPI and DAPI: Fluorescence Banding with Only Negligible Fading. Hum Genet. 1977;36:167-172.2. I. W. Taylor, et al., An Evaluation of DNA Fluochromes, Staining Techniques, and Analysis for Flow Cytometry. I. Unperturebed Cellpopulations. J Histochem Cytochem. 1980;28:1224-1232.3. F. Otto, et al., A Comparative Study of DAPI, DIPI, and Hoechst 33258 and 33342 as Chromosomal DNA Stains. Stain Technol. 1985;60:7-11.4. N. Poulin, et al., Quantitative Precision of an Automated Image Cytometric System for the Measurement of DNA Content and Distribution in Cells Labeled with Fluorescent Nucleic Acid Stains. Cytometry. 1994;16:227-235.5. M. Kawai, et al., Rapid Enumeration of Physiologically Active Bacteria in Purified Water Used in the Pharmaceutical Manufacuturing Process. J Appl Microbiol. 1999;86:496-504.

Dojindo,磺基生物制剂-二硫化钠/Na2S4/SB02

很明显,在生物体内有很多含有硫烷硫的分子,例如过硫化物和多硫化物。 这些分子种类参与硫化氢的产生、储存和释放,硫化氢被认为是一种重要的生理介质。 此外,最近的研究表明,过硫化物和多硫化物可以通过蛋白质的 s- 硫化来控制细胞内信号转导,并在体内作为抗氧化剂发挥作用,其还原活性比还原形式的谷胱甘肽或半胱氨酸高得多。 多硫化钠 (Na2Sn) 是硫烷 具有简单结构的硫供体,并根据 pH 值在水溶液中以多硫化氢的形式存在。 这些试剂对于体内硫烷硫的研究和分析是必需的。
 Chemical species containing sulfane sulfurs

Structures of Sodium polysulfides (Na 2Sn) and the pKa values.

1. Y. Kimura, Y. Mikami, K. Osumi, M. Tsugane, J. Oka, and H. Kimura, “Polysulfides are possible H 2S-derived signaling molecules in rat brain”, FASEB J., 2013, 27, 2451.2. S. Koike, Y. Ogasawara, N. Shibuya, H. Kimura, and K. Ishii, “Polysulfide exerts a protective effect against cytotoxicity caused by t-buthylhydroperoxide through Nrf2 signaling in neuroblastoma cells”, FEBS Lett., 2013, 587, 3548.

Dojindo,乳酸检测试剂盒L256,Lactate Assay Kit-WST/200/L256

Lactate Assay Kit-WST 可以量化糖酵解代谢物之一的乳酸(下限:0.02 mmol/l)。 由于 Lactate Assay Kit-WST 对应于 96 孔微孔板,因此可以同时测量多个样品。 在癌症研究的许多不同领域,乳酸定量已被广泛用作监测细胞内代谢途径变化的标志物。 近年来,关于使用乳酸作为干细胞分化指标或作为糖尿病研究指标的报道越来越多。

PrincipleThe kit is used to detect lactate in cell culture medium by measuring the absorbance of WST formazan produced according to quantities of lactate. The kit includes a “Lactate Standard” which can be used to quantify the concentration of lactate found within samples by creating standard curve.


Simple Assay Procedure


Stability

Dojindo’s stock solution is stable for 4 months under refrigerator. Your assay can be done anytime without the need freeze the product and wait for defrosting.


Standard curveStandard curve can be prepared by using Lactate Standard included in the kit. The concentration of lactate can be measured. The concentration of lactate can be evaluated by diluting the samples if the concentration is over 1 mmol/l.

Can I quantify D-Lactate levels?
No, the kit is used for the quantification of L-Lactate levels.
How stable is the Working solution?
You can’t store the Working solution. Please prepare the Working solution prior to use. Please protect from light because the Working solution is light-sensitive. The Working solution is stable for 4 hours at room temperature with protection from light.Once the Working solution is exposed to light, the color of the solution becomes from red to orange. It caused to increase background.
Can I measure samples that contain a reducing agent?
You can’t measure an accurate Lactate level because WST dye interferes with the reducing agent. If you add test material which possesses reducing properties, please prepare a few wells that only contain the medium without cells and only test material for background control. Please subtract the background from the absorbance of standard curve or samples
Are there protocols for measuring intracellular lactate level?
(1) Collect cells (1 × 105 cells * 1) in a microtube.(2) Centrifuge at 300 × g for 2 minutes and remove supernatant.(3) Add 300 μl of cold PBS and suspend by pipetting. Centrifuge at 300 × g for 2 minutes and remove supernatant.(4) Add 300 μl of 0.1% Triton-X * 2 and vortex for 1 minutes to prepare for cell lysate.(5) Centrifuge at 8000 × g for 5 minutes and collect supernatant.(6) Deproteinize the solution prepared at step (5) with an ultrafiltration membrane filter (fraction molecular weight: 10 K) * 3 to obtain a measurement sample.* 1 For HeLa cells, more than 1 × 105 cells are necessary to detect lactate level over 0.02 mmol / l.* 2 When SDS is included in the cell Lysate, color development can be inhibited. Please avoid using buffer containing SDS.* 3 Since endogenous Lactate dehydrogenase (LDH) causes background please remove LDH by deproteinization treatment.

How many samples can I measure?

* The number of samples that can be recorded when the standard curve and sample is measured in triplicates.

*A plate layout for Lactate standard solution and sample

I do not have a 450 nm filter. What other filters can I use?
You can use filters with an absorbance between 450 nm and 490 nm. However, the absorbance value can become lower if the sample is not measured at 450 nm.
Our samples did not change in color, are there any reasons for this?
Lactate level contained in the sample may be lower than the detection limit (0.02mmol/l) that can be measured using this kit. If the lactate level is below 0.02mmol/l, please consider other measurement method such as LC-MS.If you dilute the sample, lactate level contained in the diluted sample may be lower than 0.02mmol/l.Please lower the dilution ratio and adjust the concentration of the sample over the detection limit that was measured using this kit.

Dojindo,DiBAC4(3)/25/D545,DiBAC4(3)是一种 Bis-oxonol 型膜电位敏感染料

DiBAC4(3) 是一种 Bis-oxonol 型、膜电位敏感染料。 根据膜去极化检测,当细胞质中的DiBAC分布增加时,荧光强度增加。 由于氩激光 (488 nm) 可用于 DiBAC4(3) 激发,因此适用于流式细胞术和共聚焦显微镜。

1. D. E. Epps, et al., Characterization of the Steady-state and Dynamic Fluorescence Properties of the Potential-sensitive Dye Bis-(1,3-dibutylbarbituric acid)trimethine oxonol(Dibac4(3)) in Model Systems and Cells. Chem Phys Lipids. 1994;69:137-150.2. T. Brauner, et al., Comparative Measurements of Membrane Potentials with Microelectrodes and Voltage-sensitibe Dyes. Biochim Biophys Acta. 1984;771:208-216.3. T. T. Rohn, et al., Xanthine Affects [Ca2+]i and Contractile Responses of Ventricular Cardiocytes to Electrical Stimulation. Am J Physiol. 1997;273:C909-C917.4. D. J. Mason, et al., Rapid Estimation of Bacterial Antibiotic Susceptibility with Flow Cytometry. J Microsc. 1994;176:8-16.5. U. Langheinrich, et al., Hyperpolarization of Isolated Capillaries from Guinea-pig Heart Induced by K+ Channel Openers and Glucose Deprivation. J Physiol. 1997;502:397-408.6. K. S. Schroeder, et al., FLIPR: A New Instrument for Accurate, High Throughput Optical Screening. J Biomol Screen. 1996;1:75-80.

Dojindo,谷氨酸检测试剂盒-WST/100/G269,Glutamate Assay-Kit-WST

谷氨酸是一种重要的神经递质,有助于蛋白质和谷胱甘肽的生物合成。 过量的谷氨酸被认为是导致神经退行性疾病的原因,包括阿尔茨海默病。 最近的一项研究表明,抑制负责胱氨酸摄取和谷氨酸释放的胱氨酸/谷氨酸逆向转运蛋白 (xCT) 会诱导一种称为“铁死亡”的铁依赖性细胞死亡。 因此,近年来也开展了针对 xCT 的癌症研究。我们的谷氨酸检测试剂盒-WST 旨在量化谷氨酸作为代谢物。 该试剂盒允许您通过 WST 还原反应对培养基中的谷氨酸或细胞内谷氨酸进行定量。 可量化的最低谷氨酸浓度为 5 μmol/l。 该试剂盒可与 96 孔微孔板一起使用,从而可以分析多个样本。

PrincipleThe kit is used to detect Glutamate in cell culture medium by measuring the absorbance of WST formazan produced according to quantities of glutamate. The kit includes a “Glutamate Standard” which can be used to quantify the concentration of lactate found within samples by creating standard curve.


Simple Assay ProcedureProcedures are so easy that you simply incubate the plate after the addition of culture supernatant or tissue/cell lysates prior to adding a reagent.


Standard CurveStandard curve can be prepared by using Glutamate Standard included in the kit. The concentration of Glutamate can be measured. The concentration of lactate can be evaluated by diluting the samples if the concentration is over 0.5 mmol/l.


Example of Measurements of Glutamine/Glutamate level


Example of Measurements of Glutamine/Glutamate level in Ferroptosis researchIt is known that an iron-dependent cell death called “ferroptosis” is induced when xCT is inhibited by elastin treatment. The amounts of glutamate release and intracellular glutathione were measured by using the elastin-treated A549 cells. As a result, the amount of glutamate release was decreased in the elastin-treated A549 cells, and the amount of intracellular glutathione was decreased by inhibiting cystine uptake.

How many samples can I measure?
The number of samples that can be recorded when the standard curve and sample is measured in triplicates.100 TestsSample 24 samples*(measured in triplicate – See picture below)

A plate layout for Glutamate standard solution and sample

Can I quantify D-Glutamate levels?
No, the kit is used for the quantification of L-Glutamate levels.
Can I measure samples that contain a reducing agent?
You can’t measure an accurate Glutamine level because WST dye interferes with the reducing agent. If you add test material which possesses reducing properties, please prepare a few wells that only contain the medium without cells and only test material for background control.
Our samples did not change in color, are there any reasons for this?
Glutamine level contained in the sample may be lower than the detection limit (5 µmol/l) that can be measured using this kit. If the lactate level is below 5 µmol/l.If you dilute the sample, lactate level contained in the diluted sample may be lower than 5 µmol/l.Please lower the dilution ratio and adjust the concentration of the sample over the detection limit that was measured using this kit.

Dojindo,Cellstain-FDA/1/F209,FDA具有细胞膜渗透性

FDA 具有细胞膜渗透性,并以荧光素的形式积聚在活细胞内(图 1)。 由于荧光素的亲水性低于 BCECF 或钙黄绿素,因此荧光素从细胞中的渗漏率相当高。 FDA 也用于流式细胞术。 荧光素的激发和发射波长分别为 488 nm 和 530 nm。

Cell staining mechanism

Staining Procedure1.Prepare 0.5 mg/ml FDA stock solution with DMSO. Dilute 10 ul of the stock solution with 5 ml PBS(-).2.Prepare a cell suspension and wash cells with PBS(-). Prepare 1×105-1×106 cells/ml cell suspension3.Add 15 ul FDA solution to 30 ul cell suspension, and incubate at 37ºC for 15-30 min.4.Put 10 ul stained cell suspension on a glass slide and cover with a cover glass.5.Observe the cells under a fluorescence microscope with 488 nm excitation and 530 nm emission filters.

1. B. Rotman, et al., Membrane Properties of Living Mammalian Cells as Studied by Enzymatic Hydrolysis of Fluorogenic Esters. PNAS. 1966;55:134-141.2. H. R. Hulett, et al., Cell Sorting: Automated Separation of Mammalian Cells as a Function of Intercellular Fluorescence. Science. 1969;166:747-749.3. K. H. Jones, et al., An Improved Method to Determine Cell Viability by Simultaneous Staining with Fluorescein Diacetate-Propidium Iodide. J Histochem Cytochem. 1985;33:77-79.4. K. McGinnes, et al., A Fluorescence NK Assay Using Flow Cytometry. J Immunol Methods. 1986;86:7-15.5. W. M. J. Vuist, et al., Potentiation by Interleukin 2 of Burkitt’s Lymphoma Therapy with Anti-Pan B (Anti-CD19) Monoclonal Antibodies in a Mouse Xenotransplantation Model. Cancer Res. 1989;49:3783-3788.6. E. Prosperi, Intracellular Turnover of Fluorescein Diacetate. Influence of Membrane Ionic Gradients on Fluorescein Efflux. Histochem J. 1990;22:227-233.

Dojindo,SPiDER-ßGal/20/SG02,大肠杆菌的 β-半乳糖苷酶基因

来自大肠杆菌的 β-半乳糖苷酶基因被广泛用作报告基因检测标记。尽管 X-gal 是众所周知的用于检测细胞或组织样品中的 β-半乳糖苷酶的试剂,但由于细胞渗透性差,使用这些试剂的测定需要固定细胞或组织。此外,迄今为止,使用荧光试剂开发的检测方法不能清楚地区分β-半乳糖苷酶表达的细胞或区域。为了克服这些问题,Urano、Kamiya 及其同事成功开发了 SPiDER-βGal。 SPiDER-βGal理想地具有细胞渗透性和保留在细胞内区域的能力。1)通过酶促反应,当蛋白质在分子附近含有亲核官能团时,SPiDER-βGal立即形成醌甲基化物,充当亲电子试剂。通过探针与蛋白质发生反应,结合物变成荧光化合物。因此,SPIDER-βGal 允许进行单细胞分析,因为它会自我固定到细胞内蛋白质上。
Difference between SPiDER-βGal and C12FDG

Usage Examples:Fluorescence microscopic detection of β-galactosidase-expressed cells

1. HEK cells at 5 × 105 cells/ml (500 μl) and HEK/LacZ cells at 5 × 105 cells/ml (500 μl) were seeded in a 35 mm dish in DMEM (10% fetal bovine serum, 1% penicillin-streptmycin) and cultured overnight in a 5% CO2 incubator at 37oC.2. The cells were washed with 2 ml of Hanks’ HEPES buffer twice.3. SPiDER-βGal working solution (2 ml) was added to the culture dish. The cells were then incubated for 15 minutes at 37oC.4. After the supernatant was removed, the cells were washed Hanks’ HEPES buffer (2 ml) twice.5. Hanks’ HEPES buffer (2 ml) were added and the cells observed under a fluorescence microscope. (Fig. 3A)6. After the supernatant was removed, 4% paraformaldehyde (PFA) /PBS solution (2 ml) was added to the culture dish. The cells were then incubated for 15 minutes at room temperature.7. After 4% PFA/PBS solution was removed, the cells were washed Hanks’ HEPES buffer (2 ml) twice.8. Hanks’ HEPES buffer (2 ml) were added and the cells observed under a fluorescence microscope. (Fig. 3B)

Flow cytometric detection of β-galactosidase-expressed cells1. HEK cells at 5 × 105 cells/ml (500 μl) and HEK/LacZ cells at 5 × 105 cells/ml (500 μl) were mixed in a microtube.2. SPiDER-βGal DMSO stock solution (1 μl) was added to the tube. The cells were then incubated 15 minutes at 37oC .3. The cells were analyzed under a flow cytometer. (488 nm excitation, 530/30 nm bandpass filter)

β-galactosidase-expressed cells (HEK/LacZ cells) were clearly differentiate from HEK cells in flow cytometry data analysis.

Live Imaging of Drosophila tissueLiving drosophila tissue was incubated with 10 µmol/l SPiDER-βGal and 16 µmol/l Hoechst 33342 for 20-30 min, observed with confocal microscope.Only β-galactosidase expressed cells was detected with SPiDER-βGal.

Data was kindly provided by Dr. Y. Urano, at University of Tokyo, Graduate School of Medicine.

Imaging of a Fixed Tissue of a DrosophilaFormalin fixed drosophila generative cells were stained by SPiDER-βGal and DAPI. The β-galactosidase, which is expressed at the nucleus of drosophila generative cells, could be obtained by SPiDER-βGal.

Data was kindly provided by Dr. T. Nakamura, at University of Kumamoto, Institute of Molecular Embryology and Genetics.

Imaging of a Pancreas of a MouseSPiDER-βGal and Salmon-Gal were evaluated in the detectability of β-galactosidase on a pancreas of a mouse. SPiDER-βGal was able to detect the difference of the expression point of β-galactosidase more clearly than Salmon-Gal.

Data was kindly provided by Dr. S. Kume, at Tokyo Institute of Technology, School of Bioscience and Biotechnology.

Cell Senescence Assay with SPiDER-βGal by fluorescent microscopy and flow cytometrySA β-Gal in WI-38 cells induced by hydrogen peroxide was detected with SPiDER-βGal by fluorescent microscopy. SA β-Gal expression correlates with expression of other cellular senescence marker γ-H2AX. The increased expression of SA β-Gal was measured by flow cytometry.

1) T. Doura, M. Kamiya, F. Obata, Y. Yamaguchi, T. Y. Hiyama, T. Matsuda, A. Fukamizu, M. Noda, M. Miura, Y. Urano, “Detection of LacZ-Positive Cells in Living Tissue with Single-Cell Resolution.”, Angew Chem Int Ed Engl., 2016, doi: 10.1002/anie.2016033282) H. Omori, S. Ogaki, D. Sakano, M. Sato, K. Umeda, N. Takeda, N. Nakagata, S. Kume, “Changes in expression of C2cd4c in pancreatic endocrine cells during pancreatic development.”, FEBS Lett., 2016, doi: 10.1002/1873-3468.122713) Y. Nakamura, A. Mochida, T. Nagaya, S. Okuyama, F. Ogata, P. L. Choyke, H. Kobayashi, “A topically-sprayable, activatable fluorescent and retaining probe,SPiDER-βGal for detecting cancer; Advantages of anchoring to cellular proteins after activation”, Oncotarget, 2017, doi: 10.18632/oncotarget.170804) S. Lu, S. Liu, A. Wietelmann, B. Kojonazarov, A. Atzberger, C. Tang, R. T. Schermuly, H. J. Grone, S. Offermanns, “Developmental vascular remodeling defects and postnatal kidney failure in mice lacking Gpr116 (Adgrf5) and Eltd1 (Adgrl4)”, PLoS ONE., 2017, 10.1371/journal.pone.0183166.5) T. Sugizaki, S. Zhu, G. Guo, A. Matsumoto, J. Zhao, M. Endo, H. Horiguchi, J. Morinaga, Z. Tian, T. Kadomatsu, K. Miyata, H. Itoh & Y. Oike, “Treatment of diabetic mice with the SGLT2 inhibitor TA-1887 antagonizes diabetic cachexia and decreases mortality”, Nature Partner Journal:Aging and Mechanisms of Disease., doi:10.1038/s41514-017-0012-0.6) Y. Nakatani, H. Kiyonari and T. Kondo , “Ecrg4 deficiency results in extended replicative capacity of neural stem cells in a Foxg1-dependent manner”, Development.,2019,doi: 10.1242/dev.168120 .7) A. A.Tokmakov AA and K. I. Sato , “Activity and intracellular localization of senescence-associated β-galactosidase in aging Xenopus oocytes and eggs.”, Exp. Gerontol.., 2019, 119, 157.8) Y. Han, T. Bedarida, Ye Ding, Q. Wang, P. Song, and M. H. Zou, “β-Hydroxybutyrate Prevents Vascular Senescence through hnRNP A1-Mediated Upregulation of Oct4”, Molecular Cell., 2019, 71, 1064–1078. 

Mouse Tissue1) Live Staining・Dissect lacZ-expressed tissue from mouse , and cut it to the appropriate size.・Incubate in OPTI-MEM containing 10-20 μmol/l SPiDER-βGal at 37 degree in 5% CO2. (It is possible to fix with 4% paraformaldehyde (PFA) after staining.)2) Fixed Tissue Staining・Dissect lacZ-expressed tissue from mouse , and cut it to the appropriate size.・Fix with a solution containing 1% PFA and 0.2% GA , and then incubate in PBS containing 10-20 μmol/l SPiDER-βGal for 60 minutes at room temperature.Detection of SA-β-gal in the Tissue SampleReference paper using Dojindo’s SPiDER-β-gal for the tissue sample of diabetic mouse model was published.<Condition Tissue Samples were Labelled>Tissue sample was sliced into thin pieces after rapid freezing. The sliced samples were incubated in 4% Paraformaldehyde at room temperature for 20 minutes. First the samples were washed in PBS. Then, 20 μmol/l SPiDER-βGal was added and was incubated for 1 hour at 37℃. The samples were washed in PBS and observed under microscope.For more detail, please refer to the publication:T. Sugizaki, S. Zhu, G. Guo, A. Matsumoto, J. Zhao, M. Endo, H. Horiguchi, J. Morinaga, Z. Tian, T. Kadomatsu, K. Miyata, H. Itoh & Y. Oike,“Treatment of diabetic mice with the SGLT2 inhibitor TA-1887 antagonizes diabetic cachexia and decreases mortality”, Nature Partner Journal:Aging and Mechanisms of Disease., doi:10.1038/s41514-017-0012-0.

Drosophila Tissue1) Live Staining・Dissect lacZ-expressed tissue from Drosophila larvae , and then incubate in medium containing 10-20 μmol/l SPiDER-βGal for 20-30 minutes at room temperature.・If you would like to staining nuclear, please add 16 μmol/l Hoechst 33342 together. It is possible to fix with 4% paraformaldehyde (PFA) after staining.2) Fixed Tissue Staining・Dissect lacZ-expressed tissue from Drosophila larvae , and then fix for 20 minutes in 4% PFA in PBS.・After washing in PBS, incubate in PBS containing 10-20 μmol/l SPiDER-βGal for 20-30 minutes at room temperature.3) Combination with Immunostaining・Dissect lacZ-expressed tissue from Drosophila larvae , and then fix for 20 minutes in 4% PFA in PBS.・Wash with PBS-T for 3 times, 5 minutes each.・Dissolve primary-antibody in PBS-T and incubate for 30 minutes.・Wash with PBS-T for 3 times, 5 minutes each.・Incubate in PBS containg 10 μmol/l SPiDER-βGal, 16 μmol/l Hoechst 33342 and secondary antibody for 30 minutes.・Wash with PBS for 3 times, 5 minutes each.

Is there comparison data with X-Gal? What is an advantage over X-Gal?
SPiDER-βGal allows stain of a sample with a shorter time and without fixing the sample.Please check the comparison data below. There is comparison data between SPiDER-βGal and X-Gal for tissue staining.【Mouse Kidney】Refer to Figure S14 and 15 on the Supporting Information.【Mouse Salivary Gland】Refer to Figure S14 and 15 on the Supporting Information.【Mouse Brain】Refer to Figure S16 and 17 on the Supporting Information.
What is an advantage over commercially available β-Galactosidase detection probe?
SPiDER-βGal has higher cell permeability and intracellular retention than any other commercially available probe, which allows stain of a sample with a shorter time and lower concentration for mammalian cells. Please check the Selection Guide for more details.
Can I use SPiDER-βGal for tissue staining?
Yes, SPiDER-βGal can be used for tissue staining. We have experimental data with the following samples:【Drosophila Tissue】Refer to Figure S9, 12 and 13 on the Supporting Information.【Mouse Kidney】Refer to Figure S14 and 15 on the Supporting Information.【Mouse Salivary Gland】Refer to Figure S14 and 15 on the Supporting Information.【Mouse Brain】Refer to Figure S16 on the Supporting Information.
Can I fix a sample after staining with SPiDER-βGal?
Yes, the sample stained with SPiDER-βGal can be fixed with 4% PFA or methanol.
Can I stain a fixed sample with SPiDER-βGal?
Yes, SPiDER-βGal can be used for the fixed sample. We have experimental data for HEK cell, drosophila and mouse tissue. However, since fixation causes lower β-galactosidase activity, please optimize the condition for fixation.
How many time can I assay with 1 kit (20 μg×3) ?
If the final concentration is prepared at 1 μmol/l for cell staining, you can do approximately fifty 35mm dishes, fifty 8-chamber plates and ten 96- well plates.
Is there information regarding cytotoxicity?
Cytotoxicity of SPiDER-βGal to HEK-lacZ(+) cells and HEK cells was measured with Cell Counting Kit-8.【Cytotoxicity assay with HEK-lacZ(+) cells and HEK cells】Refer to Figure S8 on the Supporting Information.
How long is the Working solution stable?
You can’t store the working solution. Please prepare the working solution prior to use.
What buffer can I use for preparing the Working solution?
You can use PBS, Hanks’ HEPES and HBSS etc.
What is the recommended filter?
Fluorescence microscopy: Ex.550/25 nm, Em.605/70 nmFlow Cytometry: Ex.488 nm, Em.530/30 nm

Dojindo,IgG纯化试剂盒-G/1/AP02,IgG Purification Kit-G

IgG 纯化试剂盒用于山羊、小鼠、兔和其他动物的免疫球蛋白 G 的分离和纯化。 该试剂盒包含固定的蛋白 A 或 G 和缓冲溶液,可最大限度地回收 IgG。 从血清或其他含有 IgG 的溶液中分离和纯化 IgG 的总时间约为 30 分钟(图 1)。 由于蛋白 A 或 G 的支持物是硅胶,离心后凝胶上保留溶液的体积非常小。 因此,所有不与蛋白A结合的蛋白质或其他物质都可以通过洗涤两次来去除。 图 2 显示了来自各种动物的纯化 IgG 的 SDS-PAGE。此外,在洗脱过程中 IgG 的变性是最小的,因为与凝胶结合的 IgG 会以非常快的过程释放。 本试剂盒中的凝胶可重复使用 20 次以上,性能相同。 用过的凝胶在 0-5ºC 的洗涤缓冲液中也可稳定保存一年。

Fig. 1 IgG isolation process

Fig. 2 SDS-PAGE of isolated immunoglobulin by using IgG PurificationPurification Kit-A and Kit-G.WS : Whole SerumA : Prepared by IgG Purification Kit-AG : Prepared by IgG Purification Kit-GCondition: 6% acrylamide gel/Tris-glucine buffer

PrecautionIf the IgG solution contains gelatin,before applying the solution to the kit, enzyme digestion may be required.

Table 1 IgG Recovery from 50 μl Serum

What is the recovery of IgG with this kit?

It depends on the type of IgG and type of animal. In the case of high affinity type IgG for protein A or protein G, about 70-80% IgG is recovered from 100-200 μg IgG or IgG solution containing other proteins or macromolecules.

How is the purity of purified IgG using this kit?

The purity of the IgG from various serum is indicated in the figure above. Highly purified IgG is available with only a one time purification process.

How much IgG can be recovered from serum?

About 150-350 μg IgG can be recovered from 50 μl serum. I-7. Protein Labeling: IgG purification

How many times can a protein A gel be used?

At least 20 times.

Can I use the used protein A gel or protein G gel for the purification of different IgG solutions?

Use a new gel for a different sample to avoid contamination.

Is a used protein A gel or protein G gel stable?

A used protein A gel or protein G gel in Washing buffer is stable at 0-5ºC for one year.

Dojindo,NADP/NADPH检测试剂盒WST/100/N510

PrincipleNADP/NADPH Assay Kit-WST enables quantitation of the amount of total NADP+/NADPH, NADPH and NADP+ in cells and measurement of their ratio.

Sensitive Measurements of NADP+ and NADPH

使用该试剂盒中的提取缓冲液和过滤管,可以通过脱蛋白轻松制备来自细胞培养物的细胞裂解物。 细胞内 NADPH 水平可以通过细胞裂解物的热处理来量化。 此外,可以通过从独立测量的总 NADP+/NADPH 水平中减去 NADPH 水平来确定细胞内 NADP+ 水平。该试剂盒可用于测量多达 12 个样品和 8 个标准样品 (n=3)。 当测量超过 12 个样品时,需要准备额外的过滤管。


Study of NADP+/NADPH as Markers

NADP+ 和 NADPH 的细胞内水平被认为是了解癌细胞和线粒体功能如何受药物管理、基因工程等影响的重要代谢标志物。特别是,出版物数量有所增加,主要是在美国,这表明 细胞内代谢的评估被认为对了解细胞状态很重要。


Producing Accurate Data in Plate AssayThe quantitative analysis of NADPH and total NADP+/NADPH levels (0.01-1.00 μmol/l) is possible with the simultaneous measurement of the standard buffer supplied with this kit. When the total NADP+/NADPH levels in samples are higher than 1 μmol/l, the quantitative analysis becomes possible with the use of the diluted samples.It has been confirmed that the NADP/NADPH Assay Kit-WST reacts with neither NAD+ nor NADH (see right diagram below).


Example of Measurements in Combination with Glutathione (GSH) Quantification KitChange in metabolic activity was examined when anticancer drug doxorubicin (Dox) was added to Jurkat cells.Dox was added to Jurkat cells (3×106 cells) to obtain a final concentration of 500 nmol/l Dox, and after 24 hours incubation, NADP+/NADPH ratio and reduced/oxidized glutathione (GSH/GSSG) ratio were determined using the NADP/NADPH Assay Kit-WST and the GSSG/GSH Quantification Kit (Item#: G257), respectively, after the cells were washed in phosphate buffered saline (PBS).

The results shown above are likely to be explained by the following mechanism. When DOX (doxorubicin) was added to cells, DOX radicals, along with NADP+, were generated by enzymatic reaction. DOX radicals form reactive oxygen species (ROS), which induces DNA damage and apoptosis.In the meantime, to eliminate ROS formed in cells, GSH is consumed and GSSG is increased.Moreover, NADPH is used to reduce GSSG to GSH, resulting in an increase of NADP+.

1. C. Henninger and G. Fritz, “Statins in anthracycline-induced cardiotoxicity: Rac and Rho, and the heartbreakers.”, Cell Death Dis. 2017, 8(1), e2564.2. S. Mandziuk, R. Gieroba, A. Korga, W. Matysiak, B. Jodlowska-Jedrych, F. Burdan, E. Poleszak, M. Kowalczyk, L. Grzycka-Kowalczyk, E. Korobowicz, A. Jozefczyk and J. Dudka, “The differential effects of green tea on dose-dependent doxorubicin toxicity.”, Food Nutr Res., 2015, 59, 29754.
How many samples can I measure?

* The number of samples that can be recorded when the sample is measured in triplicates.The number of samples that can be measured when the standard sample is serially diluted from 2 μmol / l is shown in the table above. Using the data collected, a calibration curve is created at a total of 8 points (n=3).It is necessary to create a calibration curve per measurement when you perform the measurement separately. If the measurement is done separately, the above sample number will be less.

Can I purchase the filtration tube separately?

No, we don’t sell the filtration tube included in the kit separately. If you need additional supplies, you can also use a commercially available filtration tube.Supplier:Pall CorporationProduct:Nanosep® MF Centrifugal Devices (MWCO:10K, color:blue)

How stable is Working solution?

You can’t store the Working solution. Please prepare the Working solution prior to use. Please protect from light because the Working solution ins light-sensitive. The Working solution is stable for 4 hours at room temperature with protection from light.

Our samples did not change in color, are there any reasons for this?
NAD level contained in the sample may be lower than the concentration that was measured using this kit.Please increase the number of cells or lower the dilution ratio if you dilute the sample.

Dojindo,羟基-EG3-十六烷基硫醇/10/H395,聚乙二醇 (PEG) 广泛用于材料修饰

聚乙二醇 (PEG) 广泛用于材料修饰,以减少表面的非特异性结合。 这些特性通常应用于生物传感器,例如 SPR 和 QCM。 由于 Carboxy-EG6-hexadecanethiol 具有 6 个乙二醇单元、16 个原子和末端的 SH 基团,因此有望成为金表面上高度定向和稳定的 SAM。 该产品含有羧基和C16-PEG。 SAM形成后,羧基可以用缩合剂如WSC(目录代码:WO01)活化以固定氨基功能化合物或蛋白质。 为了更有效地减少非特异性结合,我们建议与羟基末端 SAM 试剂混合。

References for AminoalkanetihiolC. Pale-Grosdemange, et al., Anal. Chem., 71, 777 (1999)M. Kyo, et al., Anal. Chem., 77, 7115 (2005)

Dojindo,Bacstain-细菌活力检测试剂盒CFDA/PI/1/BS10,细菌荧光双染的系列产品

Bacstain-细菌活力检测试剂盒是用于细菌荧光双染的系列产品。 通过组合不同类型的荧光染料,可以获得每个指标(膜损伤、呼吸活性和酯酶活性)的染色图像。 细菌活力通常通过营养琼脂培养基中的菌落形成来评估。 然而,这需要很长的培养时间,并且很难识别有活力但不可培养 (VNC) 的细菌的生长。 然而,荧光染色不需要细菌培养,并且可以通过快速和简单的协议进行活力评估。

-Bacstain- Bacterial Viability Detection Kit – CFDA/PI uses esterase activity of bacteria and bacterial membrane damage as an index. CFDA is hydrolyzed to carboxyfluorescein―which is fluorescent―by intracellular esterase. PI is a parallel intercalator into the DNA double helix that stains nucleic acids; it passes only through damaged bacterial membranes. Thus, this kit can be used to measure the ratio of bacteria with esterase activity to membrane-damaged bacteria on the analysis of the fluorescent images from each stain.

 


Simple Procedure

 


Double-staining of Staphylococcus aureus (a Gram-positive bacterium)

 


Quantitative analysis

-Bacstain- Bacterial Viability Detection Kit – DAPI/PI (BS08) and –CTC/DAPI (BS09) were used to evaluate the effect of benzalkonium chloride on S. aureus (Gram-positive bacteria) by fluorescent imaging. The images were quantified by ImageJ and show the correlation with drug concentration.The results showed that the effects of benzalkonium chloride on the respiratory activity and membrane damage of S. aureus varied greatly depending on the indicator detected.The evaluation of multiple indicators will contribute to improving the reliability of drug efficacy measurements by providing a multidimensional view of the activity of the bacterium that would be missed by a single indicator.

 


Related Product Information

Product Size Product Code
-Bacstain- CFDA solution 100 assays BS03
-Bacstain- DAPI solution 100 assays BS04
-Bacstain- AO solution 100 assays BS05
-Bacstain- PI solution 100 assays BS07
-Bacstain- CTC Rapid Staining Kit (for Flow cytometry) 100 assays BS01
-Bacstain- CTC Rapid Staining Kit (for Microscopy) 100 assays BS02

Dojindo,Cellstain-Calcein AM/1/C326,Calcein-AM 与 Calcein 相比具有增强的疏水性

Calcein-AM 与 Calcein 相比具有增强的疏水性,因此很容易通过活细胞的细胞膜。 钙黄绿素-AM 渗入细胞质后,被酯酶水解成钙黄绿素,钙黄绿素留在细胞内(图 1)。 在其他试剂中,包括 BCECF-AM 和羧基荧光素二乙酸酯,Calcein-AM 是最适合用于染色活细胞的荧光探针,因为它的细胞毒性低。 钙黄绿素不抑制任何细胞功能,例如淋巴细胞的增殖或趋化性。 此外,使用钙黄绿素的活力测定是可靠的,并且与标准的 51Cr 释放测定具有良好的相关性。 钙黄绿素的激发和发射波长分别为 490 nm 和 515 nm。

Fig. 1 Cell staining mechanism

*caution* Please tap the tube before opening, and open it with care. The content may have relocated from the bottom of the tube during the shipping.

*caution*Please tap the tube before opening, and open it with care. The content may have relocated from the bottom of the tube during the shipping.

Staining Procedure1.Prepare 1 mM Calcein-AM solution with DMSO and dilute to prepare 1-50 μM Calcein-AM solution with PBS.a) 2.Add Calcein-AM solution with 1/10 of the volume of cell culture medium to the cell culture.b) 3.Incubate the cell at 37ºC for 15-30 min. 4.Wash cells twice with PBS or an appropriate buffer. 5.Observe the cells under a fluorescence microscope with 490 nm excitation and 515 nm emission filters.

a) If the Calcein-AM has difficulty loading into cells, use a detergent such as Pluronic F127.b) Or you may replace the culture medium with 1/10 concentration of Calcein-AM buffer solution.

1. K. McGinnes, et al., A Fluorescence NK Assay Using Flow Cytometry. J Immunol Methods. 1986;86:7-15.2. S. J. Morris, Real-time Multi-wavelength Fluorescence Imaging of Living Cells. BioTechniques. 1990;8:296-308.3. S. A. Weston, et al., New Fluorescent Dyes for Lymphocyte Migration Studies Analysis by Flow Cytometry and Fluorescent Microscopy. J Immunol Methods. 1990;133:87-97.4. D. M. Callewaert, et al., Characterization of Effector-Target Conjugates for Cloned Human Natural Killer and Human Lymphokine Activated Killer Cells by Flow Cytometry. Cytometry. 1991;12:666-676.5. H. Xie, et al., Intercellular Communication Through Gap Junctions Is Reduced in Senescent Cell. Biophys J. 1992;62:45-47.6. S. A. Weston, et al., Calcein: a Novel Marker for Lymphocytes Which Enter Lymph Nodes. Cytometry. 1992;13:739-749.7. X. M. Wang, et al., A New Microcellular Cytotoxicity Test Based on Calcein AM Release. Hum Immunol. 1993;37:264-270.8. N. G. Papadopoulos, et al., An Improved Fluorescence Assay for the Determination of Lymphocyte-Mediated Cytotoxicity Using Flow Cytometry. J Immunol Methods. 1994;177:101-111.9. L. S. D. Clerck, et al., Use of Fluorescent Dyes in the Determination of Adherence of Human Leucocytes to Endothelial Cells and the Effects of Fluorochromes on Cellular Function. J Immunol Methods. 1994;172:115-124.10. H. Ohata, et al., Confocal Imaging Analysis of ATP-Induced Ca2+ Response in Individual Endothelial Cells of the Artery in Situ. Am J Physiol. 1997;272:C1980-C1987.

Dojindo,Cell Cycle Assay Solution Blue/250/C549,细胞周期的控制系统与细胞增殖密切相关

细胞周期的控制系统与细胞增殖密切相关。 一个细胞产生两个子细胞的细胞分裂是细胞周期的一部分。 细胞周期可以通过使用流式细胞仪测量 DNA 染色的细胞来分析,然后分析细胞周期阶段染色细胞核的比例。 细胞周期分为两个主要阶段:间期和有丝分裂(M)期。 间期由 G1 期(细胞分裂前发生的 DNA 合成准备)、S 期(DNA 合成和复制)和 G2 期(具有重复染色体的单个细胞)组成。 M期涉及有丝分裂和胞质分裂。 细胞周期进程由细胞周期蛋白和细胞周期蛋白依赖性激酶调节。 为了确定抗癌药物和其他药物的作用,分析细胞周期检查点的机制很重要。

Simple ProcedurePropidium iodide (PI) is generally used for cell cycle analysis using flow cytometry. Compared to this analysis method, the Cell Cycle Assay Solution Blue has good membrane permeability and uses the dye with high specificity for DNA, which makes it possible to analyze the cell cycle just by adding the reagent to a cell suspension. Additionally, a 405 nm laser is available in the Cell Cycle Assay Solution Blue, allowing you to concurrently use a highly versatile 488 nm laser.


Clearly Identify Cell Cycle StagesLive CHO cells stained by the Cell Cycle Assay Solution Blue and Deep Red were measured by flow cytometry. Similar experiments were performed using the existing reagent for cell cycle analysis and PI staining a widely used staining technique. As a result, results obtained by the Cell Cycle Assay Solution were equivalent to PI staining results (shown below). Compared to four different products, our product obtained a sharp histogram peak in live cells.


Measurement ExampleDoxorubicin (DOX) acts to inhibit cell proliferation during G2/M phases of the cell cycle and induces cellular senescence. After adding DOX to A549 cells, higher histogram peaks for the G2/M phase (Cell Cycle Assay Solution Blue and Deep Red), induced cellular senescence (Cellular Senescence Detection Kit – SPiDER-βGal), and differences in mitochondrial membrane potential (JC-1 MitoMP Detection Kit) were observed compared to before.

Q: Can I use both floating cells and adherent cells?
A: Yes, this kit can be used for both floating cells and adherent cells.
Q: Is it necessary to fix cells?
A: No, this kit can be used for both unfixed and fixed cells.

Dojindo,谷氨酰胺检测试剂盒WST/100/G268

谷氨酰胺是 α-酮戊二酸(三羧酸 (TCA) 循环中间体之一)的来源,是用于产生能量以及合成核酸和其他氨基酸的重要物质。 谷氨酰胺分解,即谷氨酰胺作为底物转化为α-酮戊二酸的过程,在癌细胞中被上调。 一项研究报告说,谷氨酰胺分解在很大程度上有助于清除活性氧和减少氧化的谷胱甘肽。谷氨酰胺检测试剂盒-WST 可以量化谷氨酰胺,一种能量代谢的底物。 我们的谷氨酰胺检测试剂盒-WST 旨在量化谷氨酰胺作为代谢物。 该试剂盒允许您通过 WST 还原反应对培养基或细胞内谷氨酰胺中存在的谷氨酰胺进行定量。 可量化的谷氨酰胺最低浓度为 5 μmol/l。 该试剂盒可与 96 孔微孔板一起使用,从而可以分析多个样本。

PrincipleThe kit is used to detect Glutamine in cell culture medium by measuring the absorbance of WST formazan produced according to quantities of glutamine. The kit includes a “Glutamine Standard” which can be used to quantify the concentration of lactate found within samples by creating standard curve.


Simple Assay Procedure

*The glutamine concentration can be calculated by using the following equation:glutamine (mmol/l) = (Glutaminase solution (+))-(Glutaminase solution (-))


Standard CurveStandard curve can be prepared by using Glutamine Standard included in the kit. The concentration of Glutamine can be measured. The concentration of glutamine can be evaluated by diluting the samples if the concentration is over 0.5 mmol/l.


Example of Measurements of Glutamine/Glutamate levelA549 cells were seeded on 6-well plates. Glutamine concentrations in the culture supernatant over incubation time were measured using the Glutamine Assay Kit-WST, and changes in glutamate concentration were measured using the Glutamate Assay Kit-WST. As a result, upregulated glutaminolysis led to a time-dependent decrease in glutamine concentrations and a time-dependent increase in glutamate concentrations in culture medium.

How many samples can I measure?

The number of samples that can be recorded when the standard curve and sample is measured in triplicates.100 testsSample 12 samples*(measured in triplicate – See picture below)

A plate layout for Glutamate standard solution and sample

Prepare a test sample to be assayed. Please note that a minimum of 240 μl of sample (e.g., supernatant, lysate) is needed for each test sampleThe glutamine concentration can be calculated by using the following equation:glutamine (mmol/l) = (Glutaminase solution (+))-(Glutaminase solution (-))

How stable is Working solution?

You can’t store the Working solution. Please prepare the Working solution prior to use. Please protect from light because the Working solution is light-sensitive.

Can I quantify D-Glutamine levels?

No, the kit is used for the quantification of L-Glutamine levels.

Can I measure samples that contain a reducing agent?

You can’t accurately measure Glutamine levels if your samples contain a reducing agent. WST dye interferes with the reducing agent and can cause errors in observations. If you add a testing material that has reducing properties, please prepare a few wells that only contains the medium (no cells) and testing material for background control.

Our samples did not change in color, are there any reasons for this?
Glutamine level found within the sample may be lower than the detection limit (5 µmol/l) that can be measured using this kit.If you dilute the sample, lactate level present in the diluted sample may be lower than 5 µmol/l.Please lower the dilution ratio and adjust the concentration of the sample over the detection limit that was measured using this kit.

Dojindo,NBD-F/100/N020, NBD 标记的化合物为橙色

NBD-F 具有高反应性,可在温和条件下标记伯胺和仲胺(在 60ºC 的弱碱性溶液中反应 1 分钟)。 NBD-F 是一种用于小分子 HPLC 分析的预标记化合物。 NBD 标记的化合物为橙色,最大波长为 470 nm。衍生化合物的激发和发射波长分别为 470 nm 和 530 nm。

NBD Labeling Protocol1. To prepare sample solution, mix or dissolve a sample with 50 mM borate buffer (pH 8.0) containing 20 mM EDTA.2. Mix 300 μl of the sample solution and 100 μl of 100 mM NBD-F/acetonitrile solution in a reaction vial.3. Heat the vial at 60ºC for 1 minute and then cool it on an ice bath.4. Add 400 μl of 50 mM HCl aqueous solution to the reaction mixture.5. Use this mixture for HPLC analysis to determine NBD-labeled compounds.

1. K. Imai, et al., Fluorimetric Determination of Secondary Amino Acids by 7-fluoro-4-nitrobenzo-2-oxa-1, 3-diazole. Anal Chim Acta. 1981;130:377-383.2. Y. Watanabe, et al., High-Performance Liquid Chromatography and Sensitive Detection of Amino Acids Derivatized with 7-fluoro-4-nitrobenzo-2-oxa-1, 3-diazole. Anal Biochem. 1981;116:471-472.3. Y. Watanabe, et al., Pre-column Labelling for High-performance Liquid Chromatography of Amino Acids with 7-fluoro-4-nitrobenzo-2-oxa-1, 3-diazoleand Its Application to Protein Hydrolysates. J Chromatogr A. 1982;239:723-732.4. T. Toyo’oka, et al., Reaction of Amines of Biological Importance with 4-fluoro-7-nitrobenzo-2-oxa-1, 3-diazole. Anal Chim Acta. 1983;149:305-312.5. Y. Watanabe, et al., Liquid Chromatographic Determination of Amino and Imino Acids and Thiols by Postcolumn Derivatization with 4-Fluoro-7-nitrobenzo-2, 1, 3-oxadiazole. Anal Chem. 1983;55:1786-1791.6. Y. Watanabe, et al., Sensitive Detection of Amino Acids in Human Serum and Dried Blood Disc of 3mm Diameter for Diagnosis of Inbornerrors of Metabolism. J Chromatogr. 1984;309:279-286.7. H. Miyano, et al., Further Studies on the Reaction of Amines and Proteins with 4-fluoro-7-nitrobenzo-2-oxa-1, 3-diazole. Anal Chim Acta. 1985;170:81-87.8. H. Kotaniguchi, et al., Automatic Amino Acid Analysis Utilizing 4-fluoro-7-nitrobenzo-2-oxa-1, 3-diazole. J Chromatogr. 1987;420:141-145.9. K. Imai, et al., High-Performance Liquid Chromatography with Photochemical Fluorimetric Detection of Tryptophan Based on 4-fluoro-7-nitrobenzo-2-oxa-1, 3-diazole Total Protein Amino Acid Analysis. Anal Chim Acta. 1988;205:7-14.10. K. Imai, et al., Dynamic Analytical Chemistry: A Trial Study of the Interaction of Fluorogenic Reagents with Living Chinese Hamster Ovary Cells. Anal Chim Acta. 1989;223:299-308.11. C. Nakamura, et al., Dioxin-binding Pentapeptide for Use in a High-sensitivity On-bead Detection Assay. Anal Chem. 2005;77:7750-7757.

Dojindo,Bacstain-细菌活力检测试剂盒-DAPI/BS08,Bacstain- Bacterial Viability Detection Kit

-Bacstain- 细菌活力检测试剂盒是用于细菌荧光双染的系列产品。 通过组合不同类型的荧光染料,可以获得每个指标(膜损伤、呼吸活性和酯酶活性)的染色图像。 细菌活力通常通过营养琼脂培养基中的菌落形成来评估。 然而,这需要很长的培养时间,并且很难识别有活力但不可培养 (VNC) 的细菌的生长。 然而,荧光染色不需要细菌培养,并且可以通过快速和简单的协议进行活力评估。

-Bacstain- 细菌活力检测试剂盒 – DAPI/PI 使用细菌膜损伤作为指标。 DAPI 是一种特异于 DNA 的 AT 序列的小沟结合剂,可渗透到细菌中以染色核酸,而不管膜是否受损。 PI是DNA双螺旋中的平行嵌入剂,可染色核酸; 它只通过受损的细菌膜。 因此,该试剂盒可用于在分析每种染色剂的荧光图像时测量膜损伤细菌与总细菌的比例。

 


Simple Procedure

 


Double-staining of Staphylococcus aureus (a Gram-positive bacterium)

 


Quantitative analysis

-Bacstain- 细菌活力检测试剂盒 – DAPI/PI (BS08) 和 –CTC/DAPI (BS09) 用于通过荧光成像评估苯扎氯铵对金黄色葡萄球菌(革兰氏阳性菌)的影响。 通过ImageJ对图像进行量化并显示与药物浓度的相关性。结果表明苯扎氯铵对金黄色葡萄球菌呼吸活动和膜损伤的影响因检测到的指标而异。多指标的评估将有助于 通过提供单个指标可能会遗漏的细菌活性的多维视图,提高药物功效测量的可靠性。


Related Product Information

Product Size Product Code
-Bacstain- CFDA solution 100 assays BS03
-Bacstain- DAPI solution 100 assays BS04
-Bacstain- AO solution 100 assays BS05
-Bacstain- PI solution 100 assays BS07
-Bacstain- CTC Rapid Staining Kit (for Flow cytometry) 100 assays BS01
-Bacstain- CTC Rapid Staining Kit (for Microscopy) 100 assays BS02

Dojindo,细胞周期分析溶液深红色/250/C548

细胞周期的控制系统与细胞增殖密切相关。 一个细胞产生两个子细胞的细胞分裂是细胞周期的一部分。 细胞周期可以通过使用流式细胞仪测量 DNA 染色的细胞来分析,然后分析细胞周期阶段染色细胞核的比例。 细胞周期分为两个主要阶段:间期和有丝分裂(M)期。 间期由 G1 期(细胞分裂前发生的 DNA 合成准备)、S 期(DNA 合成和复制)和 G2 期(具有重复染色体的单个细胞)组成。 M期涉及有丝分裂和胞质分裂。 细胞周期进程由细胞周期蛋白和细胞周期蛋白依赖性激酶调节。 为了确定抗癌药物和其他药物的作用,分析细胞周期检查点的机制很重要。

Simple ProcedurePropidium iodide (PI) is generally used for cell cycle analysis using flow cytometry. Compared to this analysis method, the Cell Cycle Assay Solution Deep Red has good membrane permeability and uses the dye with high specificity for DNA, which makes it possible to analyze the cell cycle just by adding the reagent to a cell suspension. Additionally, a 633 nm laser is available in the Cell Cycle Assay Solution Deep Red, allowing you to concurrently use a highly versatile 488 nm laser.


Clearly Identify Cell Cycle StagesLive CHO cells stained by the Cell Cycle Assay Solution Blue and Deep Red were measured by flow cytometry. Similar experiments were performed using the existing reagent for cell cycle analysis and PI staining a widely used staining technique. As a result, results obtained by the Cell Cycle Assay Solution were equivalent to PI staining results (shown below). Compared to four different products, our product obtained a sharp histogram peak in live cells.


Measurement ExampleDoxorubicin (DOX) acts to inhibit cell proliferation during G2/M phases of the cell cycle and induces cellular senescence. After adding DOX to A549 cells, higher histogram peaks for the G2/M phase (Cell Cycle Assay Solution Blue and Deep Red), induced cellular senescence (Cellular Senescence Detection Kit – SPiDER-βGal), and differences in mitochondrial membrane potential (JC-1 MitoMP Detection Kit) were observed compared to before.

Q: Can I use both floating cells and adherent cells?
A: Yes, this kit can be used for both floating cells and adherent cells.
Q: Is it necessary to fix cells?
A: No, this kit can be used for both unfixed and fixed cells.

Dojindo,-Bacstain- PI Solution/100/BS07/PI 可能致癌

Staining procedure1. 让 PI 溶液 a) 在室温下静置 30 分钟以解冻。 溶液应避光。2. 用 PBS(-) 或生理盐水重悬有机体,调整细胞数至 106 细胞/mL(流式细胞仪)或 108-109 细胞/mL(显微镜)。 3. 将 10 μl PI 溶液加入 1 mL 微生物细胞悬液中,轻轻涡旋混匀。 必要时可进行甲醛固定。 4. 将微生物细胞在室温下孵育 5 分钟。 5. 用流式细胞仪或显微镜分析染色细胞。 染料的最大波长为 530 nm 激发和 620 nm 发射。

a) 由于 PI 可能致癌,因此在处理和处置时要小心。

1. N. Yamaguchi, et al., Flow cytometric analysis of bacterial respiratory and enzymatic activity in the natural aquatic environment. J Appl Microbiol. 1997;83:43-52.

Dojindo/MTT/1/M009,MTT 用于细胞活力检测

DescriptionReferencesS.D.S

Reaction Scheme

Product Description

MTT 微溶于甲醇,但在乙醇中的溶解度很低。 它几乎不溶于乙醚、丙酮或乙酸乙酯。 MTT 用于细胞活力检测。 由于MTT带有正电荷,它可以穿过细胞膜并被线粒体还原,形成紫色的甲臜染料。 MTT甲臜染料溶解需要有机溶剂。

1. T. F. Slater, et al., Studies on Succinate-tetrazolium Reductase Systems III. Points of Coupling of Four Different Tetrazolium Salts. Biochim Biophys Acta. 1963;77:383-393.2. T. Mosmann, et al., Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J Immunol Methods. 1983;65:55-63.3. H. Tada, et al., An Improved Colorimetric Assay for Interleukin 2. J Immunol Methods. 1986;93:157-165.4. M. C. Alley, et al., Feasibility of Drug Screening with Panels of Human Tumor Cell Lines Using a Microculture Tetrazolium Assay. Cancer Res. 1988;48:589-601.5. E. Aoyama, et al., Determination of Selenium by Flow Injection Analysis Based on the Selenium(III)-Catalyzed Reduction of 3-(4, 5-Dimethyl-2-Thiazolyl)-2, 5-Diphenyl-2H Tetrazolium Bromide. Anal Sci. 1991;7:103-107.6. H. Yamaue, et al., Chemosensitivity Testing with Highly Purified Fresh Human Tumor Cells with the MTT Colorimetric Assay. Eur J Cancer. 1991;27:1258-1263.

Dojindo细胞分析

细胞活力和细胞毒性测定用于药物筛选和化学物质的细胞毒性测试。Dojindo开发了高度水溶性的四唑盐,称为WST。WST-8是高度稳定的WST,用于Cell Counting Kit-8(CCK-8)。由于WST-8甲maz是水溶性的,因此不会形成晶体。因此,不需要诸如MTT测定的增溶过程。此外,CCK-8的检测灵敏度高于其他四唑盐,例如MTT,XTT,MTS或WST-1。

WST检测机制

 

ß-半乳糖苷酶检测试剂

细胞增殖/细胞毒性转染细胞染色细胞内荧光探针细菌染色微生物活力测定干细胞分化SPiDER-ßGal线粒体检测细胞代谢

应用 产品展示
细胞生长检测,药物筛选,比色/荧光检测 细胞计数试剂盒-8
细胞计数试剂盒8 + 96孔有机硅定向剂
细胞计数试剂盒-F
细胞毒性LDH检测试剂盒
-WST 96孔有机硅定向剂
MTT
了解检测机制的差异: 点击这里
细胞周期分析 细胞周期测定溶液深红色
细胞周期测定溶液蓝色

 

Dojindo,细胞计数套件-8+96孔硅树脂定向器/3000/CSP04

DescriptionReferencesDataQ & AManualS.D.S

Product Description

Cell Counting Kit-8 (CCK-8) 允许进行灵敏的比色测定,用于确定细胞增殖和细胞毒性测定中的细胞活力。 Dojindo 的高水溶性四唑盐 WST-8 被细胞中的脱氢酶活性还原,产生可溶于组织培养基的黄色甲臜染料。 由细胞中脱氢酶的活性产生的甲臜染料的量与活细胞的数量成正比。 CCK-8的检测灵敏度高于MTT、XTT、MTS或WST-1等其他四唑盐。

Cell viability detection mechanism with CCK-8


ProcedureCell Counting Kit-8 requires 3 simple steps.

The handling time of Cell Counting Kit-8 is the shortest among it’s competitors. Only 15 minutes of handling time for Cell Counting Kit-8 where as longer handling time is required for both MTS and MTT assay.

StabilityCell Counting Kit-8 is a ready-to-use solution. It is also stabe at 4ºC for 1 year. Your assay can be done anytime without thaw and freeze.


SensitivityCCK-8 (WST-8) is the highest sensitive dye for the cell based assay.

Comparison of the sensitivity using tetrazolium dye


Cytotoxicity of ReagentsOnly in CCK-8, continious culture is possible without killing cells.

Observation of Cytotoxicity after incubation with each reagent.HeLa cells were incubated with WST-8 (CCK-8), WST-1, or MTS at 24 hours from addition of those reagents.

Example Data using Cell Counting Kit-8

Data for Cell Proliferation and Cytotoxicity Assay


Absorption property of WST-8The microplate reader with a 450-490 nm filter is applicable for the measurement.

Absorption spectrum of WST-8 formazan dye

How many cells should there be in a well?
For adhesive cells, at least 1,000 cells are necessary per well (100 μl medium) when using a standard 96-well plate. For leukocytes, at least 2,500 cells are necessary per well (100 μl medium) because of low sensitivity. The recommended maximum number of cells per well for the 96-well plate is 25,000. If 24-well or 6-well plates are used for this assay, please calculate the number of cells per well accordingly, and adjust the volume of the CCK-8 solution in each well to 10% of the total volume.
Can this kit be used with a 384-well plate?
Yes, you can use this kit for a 384-well plate. Add CCK-8 solution with 1/10 volume of the culture medium in a well. If the volume of CCK-8 to be added is too small, dilute CCK-8 in half with the medium and add 1/5 of the volume of culture medium in a well.
Can this kit be used with a 24-well plate?
Yes. Add CCK-8 solution with 1/10 volume of the culture medium in a well.
Does CCK-8 stain viable cells?
No, it does not stain viable cells because a water-soluble tetrazolium salt (WST-8) is used for the CCK-8 solution. The electron mediator, 1-Methoxy PMS, receives electrons from viable cells and transfers the electrons to WST-8 in the culture medium. Since its formazan dye is also highly water soluble, CCK-8 cannot be utilized for cell staining.
Does phenol red affect the assay?
No. The absorption value of phenol red in culture medium can be removed by subtracting the absorption value of a blank solution from the absorption value of each well. Therefore, culture medium containing phenol red can be used for the CCK-8 assay.
Is there a correlation between CCK-8 and the Thymidine incorporation assay?
Yes. However, please note that since CCK-8 uses a different assay mechanism from that of the Thymidine assay, the results may differ. Comparison data are shown in the technical manual, which is available at www.dojindo.com/tm.
Is CCK-8 toxic to cells?
CCK-8 solution itself is cytotoxic because of the high concentration of 1-Methoxy PMS. CCK-8 in the culture medium, however, is not cytotoxic because of the ten times dilution with culture medium. Therefore, long incubation, such as overnight and several days, is possible. The same cell culture can be used for other cell proliferation assays, such as the crystal violet assay, neutral red assay, or DNA fluorometric assays after the CCK-8 assay is completed. Since each cell has a different tolerance to CCK-8, incubate cells with CCK-8 solution and check the cell viability if a longer incubation time is necessary.
How stable is CCK-8?
CCK-8 在室温下可稳定超过 6 个月,在 0-5 oC 下可稳定一年,并具有避光保护。 如需更长的储存时间,我们建议将溶液储存在 -20 oC ; CCK-8 在 -20oC 下可稳定超过 2 年。
我没有 450 nm 滤光片。 我还可以使用哪些其他过滤器?
您可以使用吸光度在 450 nm 和 490 nm 之间的滤光片。

Kits for Life Science Research

Dojindo细胞分析

细胞活力和细胞毒性测定用于药物筛选和化学物质的细胞毒性测试。Dojindo开发了高度水溶性的四唑盐,称为WST。WST-8是高度稳定的WST,用于Cell Counting Kit-8(CCK-8)。由于WST-8甲maz是水溶性的,因此不会形成晶体。因此,不需要诸如MTT测定的增溶过程。此外,CCK-8的检测灵敏度高于其他四唑盐,例如MTT,XTT,MTS或WST-1。

WST检测机制

ß-半乳糖苷酶检测试剂

细胞增殖/细胞毒性转染细胞染色细胞内荧光探针细菌染色微生物活力测定干细胞分化SPiDER-ßGal线粒体检测细胞代谢

应用 产品展示
细胞生长检测,药物筛选,比色/荧光检测 细胞计数试剂盒-8
细胞计数试剂盒8 + 96孔有机硅定向剂
细胞计数试剂盒-F
细胞毒性LDH检测试剂盒
-WST 96孔有机硅定向剂
MTT
了解检测机制的差异: 点击这里
细胞周期分析 细胞周期测定溶液深红色
细胞周期测定溶液蓝色

 

Dojindo,细胞毒性 LDH 检测试剂盒-WST/2000/CK12

乳酸脱氢酶 (LDH) 是一种几乎存在于细胞类型中的酶,它在辅酶 NAD+ 的存在下催化乳酸氧化成丙酮酸。 一旦细胞受到压力、损伤、化学物质或细胞间信号的损害,LDH 就会迅速从细胞膜中释放出来。 因此,测量细胞释放的 LDH 量是评估细胞死亡的主要方法之一。 由于 Dojindo 的细胞毒性 LDH 检测试剂盒-WST 既不反映活细胞的活性,也不对细胞有害,它允许检测在含有活细胞和受损细胞的孔中进行。

Choose between Two ProceduresCytotoxicity LDH Assay Kit-WST can be applied with and without supernatant transferring. Please choose suitable method for your experiment.


Assay Procedure[Optimization of cell concentration][Homogeneous Assay][Non-homogeneous Assay]


Stable Working SolutionWorking Solution is stable for 6 months under refrigerated conditions. Therefore, after the preparation, Working Solution can be used as a ready-to-use solution at any time during this period.


Experimental Examples

为了在细胞毒性测定中获得准确的结果,样品通过不同的原理进行测量。 Cell Counting Kit-8(产品代码:CK04)测量活细胞中的 NADH,LDH 测定法测量死细胞中释放的 LDH。 根据这些结果,随着毒物浓度的增加,活细胞减少,死细胞增加。

1. S. F. Jin, H. L. Ma, Z. L. Liu, S. T. Fu, C. P Zhang, Y. He, “XL413, a cell division cycle 7 kinase inhibitor enhanced the anti-fibrotic effect of pirfenidone on TGF-β1-stimulated C3H10T1/2 cells via Smad2/4.”, Exp Cell Res., 2015, 2015113000019.2. S. Watanabe, C. S. Moniaga, S. Nielsen, M. Hara-Chikuma, “Aquaporin-9 facilitates membrane transport of hydrogen peroxide in mammalian cells.Aquaporin-9 facilitates membrane transport of hydrogen peroxide in mammalian cells.”, Biochem Biophys Res Commun ., 2016, 471, 191.3. L. Wu, T. Oshima, J. Shan, H. Sei, T. Tomita, Y. Ohda, H. Fukui, J. Watari, H. Miwa , “PAR-2 activation enhances weak acid-induced ATP release through TRPV1 and ASIC sensitization in human esophageal epithelial cells.”, Am J Physiol Gastrointest Liver Physiol ., 2015, 309, G695.4. T. Fukami, A. Iida, K. Konishi, M. Nakajima , “Human arylacetamide deacetylase hydrolyzes ketoconazole to trigger hepatocellular toxicity”, Biochem. Pharmacol.., 2016, doi:10.1016/j.jphs.2016.07.007.5. M. Tanaka, M. Yoneyama, T. Shiba, T. Yamaguchi, K. Ogita, “Protease-activated receptor-1 negatively regulates proliferation of neural stem/progenitor cells derived from the hippocampal dentate gyrus of the adult mouse “, J Pharmacol Sci., 2016, doi:10.1016/j.jphs.2016.05.005.6. S. Wakatsuki, A. Furuno, M. Ohshima, and T. Araki, “Oxidative stress-dependent phosphorylation activates ZNRF1 to induce neuronal/axonal degeneration”, J Cell Biol., 2015, 211, (4), 881.

Stability of Working Solution

Reconstituted Working Solution has higher stability than competitor’s kit, eliminating the additional time to prepare the Working Solution for each assay.

Comparison of Working Solution Stability

Linearity

Dojindo’s Cytotoxicity LDH Assay Kit-WST has higher sensitivity than competitor’s kits

Cytotoxicity of mitomycin C using HeLa cells

Culture medium: MEM, 10% FBSIncubation: 37C, 5% CO2, 48 hours

Dojindo,磺基甜菜碱3十一烷硫醇/10/S350

据报道,在离子强度高于 200 mmol/l 和弱碱性条件下,引入磺基甜菜碱衍生物的 SAM 产生低非特异性结合。 然而,利用引入磺基甜菜碱衍生物的SAM的独特特性与其他硫醇和二硫化物试剂混合物SAM制备具有更高灵敏度的生物传感器是可能的。 此外,奥斯图尼等人。 使用 Dojindo 的 sulfobetaine3-十一烷硫醇对金底物上的细菌和哺乳动物细胞进行模式研究。 因此,磺基甜菜碱衍生物适用于使用生物材料进行图案化研究。

1. R. E. Holmlin, X. Chen, R. G. Chapman, S. Takayama, G. M. Whitesides, Langmuir, 2001, 17, 2841-28502. E. Ostuni, R. G. Chapman, M. N. Liang, G. Meluleni, G. Pier, D. E. Ingber, G. M. Whitesides, Langmuir, 2001, 17, 6336-6343

Dojindo,CTC/100/C440,CTC 多种方式用于检测细菌

根据目标,CTC 可以多种方式用于检测细菌。检测方法包括琼脂平板培养法,其中包括对细菌培养产生的菌落进行计数;使用荧光染色法对细菌进行染色;使用 DVC 方法检测具有生长潜力的细菌;使用FISH法-DNA扩增法检测特定细菌。 CTC 通过呼吸活动通过电子转移还原为 CTC 甲臜 (CTF),并在不溶于水的细胞内以荧光沉降的形式积聚。 CTC本身是水溶性的,在水溶液中不发荧光;然而,CTF 在低粘度流体中不发荧光。然而,在高粘度和固态的流体中,它会发出红色荧光。通过在荧光显微镜下计数或通过流式细胞仪分析,可以在将 CTC 与试剂一起孵育后寻找具有呼吸活性的细胞。通过使用核酸染色试剂对总细胞群和活细胞数量进行计数,或者使用 FISH 方法对特定的活细胞类型进行选择性计数,可以收集更高水平的数据。由于 VNC(可存活但不可培养)细菌的存在(已变得明显),对微生物快速检测方法的需求正在上升,并有望成为卫生检测技术。

1. A. W. Coleman, Enhanced Detection of Bacteria in Natural Environments by Fluorochrome Staining of DNA. Limnol Oceanogr. 1980;25:948-951.2. E. Severin, et al., Fluorimetric Assay of Redox Activity in Cells. Anal Chim Acta. 1985;170:341-346.3. G. G. Rodriguez, et al., Use of a Fluorescent Redox Probe for Direct Visualization of Actively Respiring Bacteria. Appl Environ Microbiol. 1992;58:1801-1808.4. G. Schaule, et al., Use of 5-Cyano-2,3-ditolyl Tetrazolium Chloride for Quantifying Planktonic and Sessile Respiring Bacteria in Drinking Water. Appl Environ Microbiol. 1993;59:3850-3857.5. R. A. Bovill, et al., Comparison of the Fluorescent Redox Dye 5-Cyano-2,3-ditolyltetrazolium Chloride with p-Iodonitrotetrazolium Violet to Detect Metabolic Activity in Heat-stressed Listeria monocytogenes Cells. J Appl Bacteriol. 1994;77:353-358.6. M. T. E. Suller, et al., Flow Cytometric Assesment of the Postantibiotic Effect of Methicillin on Staphylococcus aureus. Antimicrob Agents Chemother. 1998;42:1195-1199.7. M. Kawai, et al., Rapid Enumeration of Physiologically Active Bacteria in Purified Water Used in the Pharmaceutical Manufacuturing Process. J Appl Microbiol. 1999;86:496-504.8. N. Yamaguchi, et al., Rapid Detection of Respiring Escherichia coli O157:H7 in Apple Juice, Milk, and Ground Beef by Flow Cytometry. Cytometry. 2003;54A:27-35.9. A. Hiraishi, et al., An Improved Redox Dye-Staining Method Using 5-Cyano-2,3-Ditoryl Tetrazolium Chloride for Detection of Metabolically Active Bacteria in Activated Sludge. Microbes Environ. 2004;19:61-70.10. A. Kitaguchi, et al., Enumeration of Respiring – spp. in Milk within 6 Hours by Fluorescence In Situ Hybridization Following Formazan Reduction. Appl Environ Microbiol. 2005;71:2748-2752.

Staining Data

E. coli staining ConditionE. coli culture was stained with 5 mg/ml CTC for 4 hours at 37ºC.A) Phase-contrast microscopeB) fluorescent microscope (485 nm, 510 nm filters)

B. subtiles staining ConditionB. subtilis culture was stained with 5 mg/ml CTC for 4 hours at 37ºC.A) Phase-contrast microscopeB) fluorescent microscope (485 nm, 510 nm filters)

Dojindo,-Bacstain- CFDA Solution/100/BS03

Required Equipment and Materials10 μl, 1000 μl pipettes, incubator, Microscope (blue excitation filter and red emission filter) or flow cytometer (488 nm blue laser)
Cell staining mechanism

Staining procedure1. Allow CFDA solution to stand at room temperature for 30 minutes to thaw. Solution should be protected from light.2. Resuspend the organism with an appropriate buffer (phosphate buffer, saline, etc.) a) and adjust the number of cells to 106 cells/mL(flow cytometry) or 108-109 cells/mL(microscopy).3. Add CFDA solution into the microbial cell suspension and vortex gently to mix. Use 5 μl for flow cytometry and 15 μl for microscopy analysis. The maximum wavelengths of the dye are 493 nm for excitation and 515 nm for emission.4. Incubate the microbial cell at 37ºC for 5 minutes b).5. Fix the microbial cell by addition of formaldehyde (1-4% final concentration).6. Remove the buffer by filtration or centrifugation, and resuspend with buffer.7. Analyze the stained-cells by a flow cytometer or a microscope.

a) Gram-negative bacteria tend to exhibit lower fluorescence intensity than Gram-positive bacteria because of their cell structure (outer membrane impedes penetration of CFDA). For the staining of Gram-negative bacteria, use 0.1 M phosphate buffer, 0.9 M NaCl, 0.5 mM EDTA, pH 8.5.b) If CFDA staining is not sufficient with 5 minutes of incubation, increase the incubation time.

1. N. Yamaguchi, et al., Flow cytometric analysis of bacterial respiratory enzymatic activity in the natural aquatic environment. J Appl Microbiol. 1997;83:43-52.2. M. Kawai, et al., Rapid Enumeration of Physiologically Active Bacteria in Purified Water Used in the Pharmaceutical Manufacuturing Process. J Appl Microbiol. 1999;86:496-504.

Dojindo,FDPA/100/F330,膦酸衍生物用于氧化金属的表面改性

膦酸衍生物用于氧化金属的表面改性,如 Al2O31)、TiO22)、ZrO23)、SiO24)、Mica5)、不锈钢(SS316L)6)、镍钛诺7)、羟基磷灰石8)、AgO9)、ZnO10)、ITO11、12 ). 长期以来,有机硅烷一直被用于在金属氧化物上形成自组装单层 (SAM)。然而,由于试剂之间的稳定性和聚合性差,在应用中并不总是适用。另一方面,膦酸衍生物同样在金属氧化物上形成SAM,尽管它们是非常稳定的化合物。此外,据报道,膦酸衍生物使用形成比有机硅烷更稳定和致密的 SAM。克劳克等。人。和 Sekitani 等。人。显示 Al2O3 上的烷基膦酸酯 SAM 比三氯硅烷衍生物 SAM 作为有机晶体管的导体膜更有用13)。Sharma 等。人。已经报道了通过氧等离子体处理或用含有全氟烷基的膦酸(FOPA)修饰ITO衬底来增加ITO衬底的功函数。然而,提高的功函数水平在 FOPA 改性衬底上保持 246 小时,而在氧等离子体处理的衬底上功函数立即降低 11)。此外,使用具有 FOPA 的改性 TO 制造的有机薄膜太阳能电池提高了光强度、驱动电压和寿命的稳定性。有三种不同烷基长度的全氟膦酸可供选择。

1) T. Hauffman, O. Blajiev, J. Snauwaert, C. van Haesendonck, A. Hubin, H. Terryn,  EStudy of the self-assembling of n-octylphosphonic acid layers on aluminum oxide E Langmuir, 2008, 24 (23), 13450.2) B. M. Silverman, K. A. Wieghaus, J. Schwartz, “Comparative properties of siloxane vs phosphonate monolayers on a key titanium alloy E Langmuir, 2005, 21(1), 225.3) W. Gao, L. Reven, “Solid-state NMR-studies of self-assembled monolayers E Langmuir 1995, 11 (6), 1860.4) E. L. Hanson, J. Schwartz, B. Nickel, N. Koch, M. F. Danisman, “Bonding self-assembled, compact organophosphonate monolayers to the native oxide surface of silicon E J. Am. Chem. Soc. 2003, 125 (51), 16074.5)J. T. Woodward, A. Ulman, D. K. Schwartz, “Self-assembled monolayer growth of octadecylphosphonic acid on mica E Langmuir 1996, 12 (15), 3626.6)A. Raman, M. Dubey, I. Gouzman and E. S. Gawalt, “Formation of self-assembled monolayers of alkylphosphonic acid on the netive oxide surface of SS316L E Langmuir, 2006, 22, 6469.7) R. Quinones and E. S. Gawalt, “Polystyrene formation on monolayer-modified nitinol effectively controls corrosion E Langmuir, 2008, 24, 10858.8) S. C. D’Andrea and Al. Y. Fadeev, “Covalent surface modification of calcium hydroxyapatite using n-alkyl- and n-fluoroalkylphosphonic acids Estrong>, Langmuir, 2003, 19, 7904.9) Y. T. Tao, C. Y. Huang, D. R. Chiou, L. J. Chens, “Infrared and atomic force microscopy imaging study of the reorganization of self-assembled monolayers of carboxylic acids on silver surface E Langmuir, 2002, 18, 8400.10) B. Zhang, T. Kong, W. Xu, R. Su, Y. Gao and G. Cheng, “Surface functionalization of zinc oxide by carboxyalkylphosphonic acid self-assembled monolayers E Langmuir, 2010, 26(6), 4514.11) A. Sharma, B. Kippelen, P. J. Hotchkiss and S. R. Marder, “Stabilization of the work function of indium tin oxide using organic surface modifiers in organic light-emitting diodes E Appl. Phys. Lett., 2008, 93, 163308.12) A. Pulsipher, N. P. Westcott, W. Luo, and M. N. Yousaf, “Rapid in situ generation of two patterned chemoselective surface chemistries from a single hydroxy-terminated surface using controlled microfluidic oxidation E J. Am. Chem. Soc., 2009, 131(22), 762613) a) H. Klauk, U. Zschieschang, J. Pflaum, M. Halik,  E/span>Ultralow-power organic complementary circuits E Nature,2007, 445, 745. b) T. Sekitani, Y. Noguchi, U. Zschieschang, H. Klauk, T. Someya, “Organic transistors manufactured using inkjet technology with subfemtoliter accuracy E Proc. Natl. Acad. Sci. USA, 2008, 105, 4976

Dojindo,11-AUPA/100/A517,氧化钛膜上形成 11-HUPA 的 SAM 以修饰荧光分子

膦酸衍生物用于氧化金属如Al2O31)、TiO22)、ZrO23)、SiO24)、Mica5)、不锈钢(SS316L)6)、镍钛诺7)、羟基磷灰石8)、ZnO9)、ITO10、11)的表面改性。长期以来,有机硅烷被用于在金属氧化物上形成自组装单分子层(SAM)。然而,由于试剂之间的稳定性和聚合性差,在应用中并不总是适用。另一方面,膦酸衍生物同样在金属氧化物上形成SAM,尽管它们是非常稳定的化合物。此外,据报道,膦酸衍生物使用形成比有机硅烷更稳定和致密的 SAM。施瓦茨等。人。表明当在氧化钛膜上形成 11-HUPA 的 SAM 以修饰荧光分子时,膦酸盐 SAM 在碱性溶液中的稳定性和密度是有机硅烷的四倍。膦酸衍生物机械地结合到氧化钛膜上的高密度,因为膦酸衍生物通过质子转移到基材产生 OH,而有机硅烷仅与氧化钛膜中存在的 OH 基团反应12)。

1. T. Hauffman, O. Blajiev, J. Snauwaert, C. van Haesendonck, A. Hubin, H. Terryn, “Study of the self-assembling of n-octylphosphonic acid layers on aluminum oxide”, Langmuir, 2008, 24 (23), 13450.2. B. M. Silverman, K. A. Wieghaus, J. Schwartz, “Comparative properties of siloxane vs phosphonate monolayers on a key titanium alloy”, Langmuir, 2005, 21 (1), 225.3. W. Gao, L. Reven, “Solid-state NMR-studies of self-assembled monolayers”, Langmuir, 1995, 11 (6), 1860.4. E. L. Hanson, J. Schwartz, B. Nickel, N. Koch, M. F. Danisman, “Bonding self-assembled, compact organophosphonate monolayers to the native oxide surface of silicon”, J. Am. Chem. Soc., 2003, 125 (51), 16074.5. J. T. Woodward, A. Ulman, D. K. Schwartz, “Self-assembled monolayer growth of octadecylphosphonic acid on mica”, Langmuir 1996, 12 (15), 3626.6. A. Raman, M. Dubey, I. Gouzman and E. S. Gawalt, “Formation of self-assembled monolayers of alkylphosphonic acid on the netive oxide surface of SS316L E Langmuir, 2006, 22, 6469.7. R. Quinones and E. S. Gawalt, “Polystyrene formation on monolayer-modified nitinol effectively controls corrosion”, Langmuir, 2008, 24, 10858.8. S. C. D’Andrea and Al. Y. Fadeev, “Covalent surface modification of calcium hydroxyapatite using n-alkyl- and n-fluoroalkylphosphonic acids”, Langmuir, 2003, 19, 7904.9. B. Zhang, T. Kong, W. Xu, R. Su, Y. Gao and G. Cheng, “Surface functionalization of zinc oxide by carboxyalkylphosphonic acid self-assembled monolayers”, Langmuir, 2010, 26(6), 4514.10. A. Sharma, B. Kippelen, P. J. Hotchkiss and S. R. Marder, “Stabilization of the work function of indium tin oxide using organic surface modifiers in organic light-emitting diodes”, Appl. Phys. Lett., 2008, 93, 163308.11. A. Pulsipher, N. P. Westcott, W. Luo, and M. N. Yousaf, “Rapid in situ generation of two patterned chemoselective surface chemistries from a single hydroxy-terminated surface using controlled microfluidic oxidation”, J. Am. Chem. Soc., 2009, 131 (22), 7626.12. J. Schwartz, M. J. Avaltroni, M. P. Danahy, B. M. Silverman, E. L. Hanson, J. E. Schwarzbauer, K. S. Midwood, E. S. Gawalt, “Cell attachment and spreading on metal implant materials”, Mater. Sci. Eng. C, 2003, 23, 395.

Dojindo,FHPA/100/F340,膦酸衍生物同样在金属氧化物上形成SAM

Structural FormulaProduct Description膦酸衍生物用于氧化金属的表面改性,如 Al2O31)、TiO22)、ZrO23)、SiO24)、Mica5)、不锈钢(SS316L)6)、镍钛诺7)、羟基磷灰石8)、AgO9)、ZnO10)、ITO11、12 ). 长期以来,有机硅烷一直被用于在金属氧化物上形成自组装单层 (SAM)。然而,由于试剂之间的稳定性和聚合性差,在应用中并不总是适用。另一方面,膦酸衍生物同样在金属氧化物上形成SAM,尽管它们是非常稳定的化合物。此外,据报道,膦酸衍生物使用形成比有机硅烷更稳定和致密的 SAM。克劳克等。人。和 Sekitani 等。人。显示 Al2O3 上的烷基膦酸酯 SAM 比三氯硅烷衍生物 SAM 作为有机晶体管的导体膜更有用13)。Sharma 等。人。已经报道了通过氧等离子体处理或用含有全氟烷基的膦酸(FOPA)修饰ITO衬底来增加ITO衬底的功函数。然而,提高的功函数水平在 FOPA 改性衬底上保持 246 小时,而在氧等离子体处理的衬底上功函数立即降低 11)。此外,使用具有 FOPA 的改性 TO 制造的有机薄膜太阳能电池提高了光强度、驱动电压和寿命的稳定性。有三种不同烷基长度的全氟膦酸可供选择。

1) T. Hauffman, O. Blajiev, J. Snauwaert, C. van Haesendonck, A. Hubin, H. Terryn,  EStudy of the self-assembling of n-octylphosphonic acid layers on aluminum oxide E Langmuir, 2008, 24 (23), 13450.2) B. M. Silverman, K. A. Wieghaus, J. Schwartz, “Comparative properties of siloxane vs phosphonate monolayers on a key titanium alloy E Langmuir, 2005, 21(1), 225.3) W. Gao, L. Reven, “Solid-state NMR-studies of self-assembled monolayers E Langmuir 1995, 11 (6), 1860.4) E. L. Hanson, J. Schwartz, B. Nickel, N. Koch, M. F. Danisman, “Bonding self-assembled, compact organophosphonate monolayers to the native oxide surface of silicon E J. Am. Chem. Soc. 2003, 125 (51), 16074.5)J. T. Woodward, A. Ulman, D. K. Schwartz, “Self-assembled monolayer growth of octadecylphosphonic acid on mica E Langmuir 1996, 12 (15), 3626.6)A. Raman, M. Dubey, I. Gouzman and E. S. Gawalt, “Formation of self-assembled monolayers of alkylphosphonic acid on the netive oxide surface of SS316L E Langmuir, 2006, 22, 6469.7) R. Quinones and E. S. Gawalt, “Polystyrene formation on monolayer-modified nitinol effectively controls corrosion E Langmuir, 2008, 24, 10858.8) S. C. D’Andrea and Al. Y. Fadeev, “Covalent surface modification of calcium hydroxyapatite using n-alkyl- and n-fluoroalkylphosphonic acids Estrong>, Langmuir, 2003, 19, 7904.9) Y. T. Tao, C. Y. Huang, D. R. Chiou, L. J. Chens, “Infrared and atomic force microscopy imaging study of the reorganization of self-assembled monolayers of carboxylic acids on silver surface E Langmuir, 2002, 18, 8400.10) B. Zhang, T. Kong, W. Xu, R. Su, Y. Gao and G. Cheng, “Surface functionalization of zinc oxide by carboxyalkylphosphonic acid self-assembled monolayers E Langmuir, 2010, 26(6), 4514.11) A. Sharma, B. Kippelen, P. J. Hotchkiss and S. R. Marder, “Stabilization of the work function of indium tin oxide using organic surface modifiers in organic light-emitting diodes E Appl. Phys. Lett., 2008, 93, 163308.12) A. Pulsipher, N. P. Westcott, W. Luo, and M. N. Yousaf, “Rapid in situ generation of two patterned chemoselective surface chemistries from a single hydroxy-terminated surface using controlled microfluidic oxidation E J. Am. Chem. Soc., 2009, 131(22), 762613) a) H. Klauk, U. Zschieschang, J. Pflaum, M. Halik,  E/span>Ultralow-power organic complementary circuits E Nature,2007, 445, 745. b) T. Sekitani, Y. Noguchi, U. Zschieschang, H. Klauk, T. Someya, “Organic transistors manufactured using inkjet technology with subfemtoliter accuracy E Proc. Natl. Acad. Sci. USA, 2008, 105, 4976

Dojindo,96井硅树脂定向器/1/WSP01

Description

可重复使用的硅胶板与字母数字字符完美定位,以清楚地识别微孔板上的每个孔。 三种不同颜色的列提高了准确性和效率。

Whole Image of Silicone Orienter  Silicone Orienter with Plate
Distinguish by Alpha-Numeric  Easy to Identify
Reusable Silicone  Color Coded

Dojindo细胞分析

细胞活力和细胞毒性测定用于药物筛选和化学物质的细胞毒性测试。Dojindo开发了高度水溶性的四唑盐,称为WST。WST-8是高度稳定的WST,用于Cell Counting Kit-8(CCK-8)。由于WST-8甲maz是水溶性的,因此不会形成晶体。因此,不需要诸如MTT测定的增溶过程。此外,CCK-8的检测灵敏度高于其他四唑盐,例如MTT,XTT,MTS或WST-1。

WST检测机制

 

ß-半乳糖苷酶检测试剂

细胞增殖/细胞毒性转染细胞染色细胞内荧光探针细菌染色微生物活力测定干细胞分化SPiDER-ßGal线粒体检测细胞代谢

应用 产品展示
细胞生长检测,药物筛选,比色/荧光检测 细胞计数试剂盒-8
细胞计数试剂盒8 + 96孔有机硅定向剂
细胞计数试剂盒-F
细胞毒性LDH检测试剂盒
-WST 96孔有机硅定向剂
MTT
了解检测机制的差异: 点击这里
细胞周期分析 细胞周期测定溶液深红色
细胞周期测定溶液蓝色

 

Dojindo,11-HUPA/100/H399,膦酸衍生物用于氧化金属的表面改性

膦酸衍生物用于氧化金属的表面改性,如 Al2O31)、TiO22)、ZrO23)、SiO24)、Mica5)、不锈钢(SS316L)6)、镍钛诺7)、羟基磷灰石8)、AgO9)、ZnO10)、ITO11、12 ). 长期以来,有机硅烷一直被用于在金属氧化物上形成自组装单层 (SAM)。然而,由于试剂之间的稳定性和聚合性差,在应用中并不总是适用。另一方面,膦酸衍生物同样在金属氧化物上形成SAM,尽管它们是非常稳定的化合物。此外,据报道,膦酸衍生物使用形成比有机硅烷更稳定和致密的 SAM。克劳克等。人。和 Sekitani 等。人。显示 Al2O3 上的烷基膦酸 SAM 比三氯硅烷衍生物 SAM 更有用作为有机晶体管的导体膜 13)。11-HUPA 是一种含有羟基末端的烷基膦酸衍生物。普尔西弗等。人。通过控制用 11-HUPA12 修饰的 ITO 基板上的氧化条件来制备两种不同的表面图案(醛和羧酸)。

1. T. Hauffman, O. Blajiev, J. Snauwaert, C. van Haesendonck, A. Hubin, H. Terryn,  EStudy of the self-assembling of n-octylphosphonic acid layers on aluminum oxide E Langmuir, 2008, 24 (23), 13450.2. B. M. Silverman, K. A. Wieghaus, J. Schwartz, “Comparative properties of siloxane vs phosphonate monolayers on a key titanium alloy E Langmuir, 2005, 21(1), 225.3. W. Gao, L. Reven, “Solid-state NMR-studies of self-assembled monolayers E Langmuir 1995, 11 (6), 1860.4. E. L. Hanson, J. Schwartz, B. Nickel, N. Koch, M. F. Danisman, “Bonding self-assembled, compact organophosphonate monolayers to the native oxide surface of silicon E J. Am. Chem. Soc. 2003, 125 (51), 16074.5. J. T. Woodward, A. Ulman, D. K. Schwartz, “Self-assembled monolayer growth of octadecylphosphonic acid on mica E Langmuir 1996, 12 (15), 3626.6. A. Raman, M. Dubey, I. Gouzman and E. S. Gawalt, “Formation of self-assembled monolayers of alkylphosphonic acid on the netive oxide surface of SS316L E Langmuir, 2006, 22, 6469.7.  R. Quinones and E. S. Gawalt, “Polystyrene formation on monolayer-modified nitinol effectively controls corrosion E Langmuir, 2008, 24, 10858.8. S. C. D’Andrea and Al. Y. Fadeev, “Covalent surface modification of calcium hydroxyapatite using n-alkyl- and n-fluoroalkylphosphonic acids EB>, Langmuir, 2003, 19, 7904.9. Y. T. Tao, C. Y. Huang, D. R. Chiou, L. J. Chens, “Infrared and atomic force microscopy imaging study of the reorganization of self-assembled monolayers of carboxylic acids on silver surface E Langmuir, 2002, 18, 8400.10. B. Zhang, T. Kong, W. Xu, R. Su, Y. Gao and G. Cheng, “Surface functionalization of zinc oxide by carboxyalkylphosphonic acid self-assembled monolayers E Langmuir, 2010, 26(6), 4514.11. A. Sharma, B. Kippelen, P. J. Hotchkiss and S. R. Marder, “Stabilization of the work function of indium tin oxide using organic surface modifiers in organic light-emitting diodes E Appl. Phys. Lett., 2008, 93, 163308.12. A. Pulsipher, N. P. Westcott, W. Luo, and M. N. Yousaf, “Rapid in situ generation of two patterned chemoselective surface chemistries from a single hydroxy-terminated surface using controlled microfluidic oxidation E J. Am. Chem. Soc., 2009, 131(22), 762613. a) H. Klauk, U. Zschieschang, J. Pflaum, M. Halik,  E/SPAN>Ultralow-power organic complementary circuits E Nature, 2007, 445, 745. b) T. Sekitani, Y. Noguchi, U. Zschieschang, H. Klauk, T. Someya, “Organic transistors manufactured using inkjet technology with subfemtoliter accuracy E Proc. Natl. Acad. Sci. USA, 2008, 105, 4976

Dojindo,-Bacstain-AO溶液/100/BS05

所需设备和材料 10 μl、1000 μl 移液器、培养箱、显微镜(蓝色激发滤光片和红色发射滤光片)或流式细胞仪(488 nm 蓝色激光)

Staining procedure1. 让 AO 溶液 a) 在室温下静置 30 分钟以解冻。 溶液应避光。2. 用 PBS(-) 或生理盐水重悬有机体,调整细胞数至 106 细胞/mL(流式细胞仪)或 108-109 细胞/mL(显微镜)。 3. 将 3 μl AO 溶液加入 1 mL 微生物细胞悬液中,轻轻涡旋混合。 必要时可进行甲醛固定。 4. 将微生物细胞在室温下孵育 5 分钟。 5. 用流式细胞仪或显微镜分析染色细胞。 带有 ssDNA 的染料的最大波长为 420-460 nm 用于激发和 630-650 nm 用于发射。 dsDNA 染料的最大波长为 500 nm 激发和 520 nm 发射。

a) Since AO may be carcinogenic, be careful when handling and disposing.

1. J. E. Hobbie, et al., Use of Nucleopore Filters for Counting Bacteria by Fluorescence Microscopy. Appl Environ Microbiol. 1997;33:1225-1228.2. S. F. Nishino, et al., Direct Acridine Orange Counting of Bacteria Preserved with Acidified Lugol Iodine. Appl Environ Microbiol. 1986;52:602-604.

Dojindo,-Cellstain- CFSE/1/C375,CFSE 是细胞膜可渗透的

CFSE 是细胞膜可渗透的,并且很容易在活细胞内积聚,在那里它与细胞内蛋白质共价结合(图 1)。 水解的 CFSE 发出荧光,共价连接的荧光素分子不会从细胞中泄漏。 CFSE 标记的细胞可以在体内监测数周。 因此,CFSE 可用于检测活细胞以及通过荧光显微镜对细胞活动进行长期观察。 CFSE 标记细胞的激发和发射波长分别为 500 nm 和 520 nm。

Staining Procedure1.Prepare 1 mM CFSE solution with DMSO. Dilute it to prepare 10-50 μM CFSE solution with PBS or an appropriate buffer.2.Add CFSE solution with 1/10 of the volume of cell culture medium to the cell culture.3.Incubate the cell at 37ºC for 15 to 30 min.4.Wash cells twice with PBS or an appropriate buffer.5.Observe the cells under a fluorescence microscope with 490 nm excitation and 530 nm emission filters.

1. M. Bronner-Fraser, Alterations in Neural Crest Migration by a Monoclonal Antibody That Affects Cell Adhesion. J Cell Biol. 1985;101:610-617.2. A. Nose, et al., A Novel Cadherin Cell Adhesion Molecule:Its Expression Patterns Associated WithImplantation and Organogenesis of Mouse Embryos. J Cell Biol. 1986;103:2649-2658.3. S. A. Weston, et al., New Fluorescent Dyes for Lymphocyte Migration Studies Analysis by Flow Cytometry and Fluorescent Microscopy. J Immunol Methods. 1990;133:87-97.4. C. K. Raymond, et al., Molecular Analysis of the Yeast VPS3 Gene and the Role of Its Product in Vacuolar Protein Sorting and Vacuolar Segregation during the Cell Cycle. J Cell Biol. 1990;111:877-892.5. G. Radcliff, et al., Quantification of Effector/Target Conjugation Involving Natural Killer(NK) or Lymphokine Activated Killer(LAK) Cells by Two-color Flow Cytometry. J Immunol Methods. 1991;139:281-292.6. S. A. Weston, et al., Calcein: a Novel Marker for Lymphocytes Which Enter Lymph Nodes. Cytometry. 1992;13:739-749.7. L. S. D. Clerck, et al., Use of Fluorescent Dyes in the Determination of Adherence of Human Leucocytes to Endothelial Cells and the Effects of Fluorochromes on Cellular Function. J Immunol Methods. 1994;172:115-124.

Dojindo,羟基-EG6-十一烷硫醇/100/H355,聚乙二醇(PEG)材料改性以提高表面的亲水性

聚乙二醇 (PEG) 广泛用于材料改性以提高表面的亲水性。 PEG 涂层材料通常在生理条件下更稳定。 由于羟基-EGn-十一硫醇具有3或6个乙二醇单元,11个碳原子,末端有一个SH基团,因此可用于在金表面制备高度取向和亲水的SAM,适合在表面进行生物材料标记 . 这是由于亲水性的提高。 亲水表面可以防止蛋白质或其他生物材料发生非特异性结合。 因此,该试剂制备的SAM将为开发生物材料传感器或DNA/蛋白质微阵列提供更好的表面。 羟基-EGn-十一硫醇(n = 3, 6)用于根据引入到表面上的分子的密度来稀释羧基-SAM或氨基-SAM。 有几篇关于标记蛋白质(如卵清蛋白和细胞色素 C)的论文。

4. C. Pale-Grosdemange, E. S. Simon, K. L. Prime, and G. M. Whitesides, Anal. Chem., 1999, 71, 777.5. A. Subramanian, J. Irudayaraj, and T. Ryan, Biosensors and Bioelectronics, 2006, 21, 998.6. X. Qian, S. J. Metallo, I. S. Choi, H. Wu, M. N. Liang and G. M. Whitesides, Anal. Chem., 2002, 74, 1805.7. M. Kyo, K.Usui-Aoki, H. Koga, Anal. Chem, 2005, 77, 7115.

Dojindo,-磺基生物制剂-蛋白质S-亚硝基化监测试剂盒/20/SB14

蛋白质硫醇的修饰是最重要的翻译后修饰之一,它的发生取决于细胞中的氧化还原状态。蛋白质 S-亚硝基化是蛋白质硫醇的 NO(一氧化氮)依赖性修饰,对于调节转录、蛋白质表达和信号转导等细胞功能至关重要。 -SulfoBiotics- 蛋白质 S-亚硝基化监测试剂盒允许通过凝胶电泳分析检测 S-亚硝基化蛋白质。该试剂盒包含用于阻断蛋白质上游离硫醇、还原 S-亚硝基化硫醇和标记还原硫醇的化学试剂。在阻断蛋白质的游离硫醇后,S-亚硝基化硫醇被还原剂选择性还原,并用蛋白质-SHifter Plus标记,这是一种由高分子量组成的新型马来酰亚胺化合物。当一个蛋白质-SHifter Plus 分子与蛋白质的硫醇基团结合时,通过凝胶电泳分析观察到对应于约 15 kDa 分子量的迁移率变化。因此,蛋白质上的 S-亚硝基化硫醇基团的数量可以通过 SDS-PAGE 通过迁移率变化分析清楚地识别。此外,Protein-SHifter Plus 部分可以在凝胶电泳后用紫外线照射在凝胶中从标记的蛋白质上切割下来,因为 Protein-SHifter Plus 在分子中具有紫外光可裂解部分。因此,经紫外线照射处理的蛋白质可以从凝胶转移到 PVDF 膜上,并在膜上被特异性抗体检测到与未标记的蛋白质相似。

Figure 1 Schematic Protocol of Protein S-Nitrosylation Monitoring Kit

1. S. Hara, Y. Tatenaka, Y. Ohuchi and T. Hisabori, “Direct determination of the redox status of cysteine residues in proteins in vivo”, Biochem. Biophys. Res. Commun., 2015, 456(1) 339.2. X. Wang, N. Kettenhofen, S. Shiva, N. Hogg, and M. Gladwin, “Copper dependence of the biotin switch assay : modified assay for measuring cellular and blood nitrosated proteins”, Free Radic. Biol. Med., 2008, 44, 1362.3. M. T. Forrester, M. W. Foster, M. Benhar, and J. S. Stamler, “Detection of Protein S-Nitrosylation with the Biotin Switch Technique”, Free Radic. Biol. Med., 2009, 46(2), 119.4. M. D. Kornberg, N. Sen, M. R. Hara, K. R. Juluri, J. V. K. Nguyen, A. M. Snowman, L. Law, L. D. Hester, and S. H. Snyder, “GAPDH Mediates Nitrosylation of Nuclear Proteins”, Nat. Cell Biol., 2010, 12(11), 1094.5. Wang X, Shults NV, Suzuki YJ, “Oxidative profiling of the failing right heart in rats with pulmonary hypertension.”, PLoS ONE 12(5): e0176887.

Analysis of GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) S-Nitrosylation in HeLa cell

1.HeLa cells were seeded on a 24-wells plate at the concentration of 5 x 10 cells/well and cultured overnight at 37oCin a 5% CO2 incubator (culture media : MEM).2.The cells were washed using HBSS (500 μl) twice, and two different concentrations of S-nitrosocysteine solutions (1 mmol/l and 100 μmol/l) in PBS (500 μl) was added to each well.3.The cells were incubated at 37oC for 45 minutes.4.After the cells were washed using HBSS (500 μl) twice, Blocking Solution (200 μl) was added to each well. Then, the cells were dissolved by pipetting.5.The cell lysate was transferred to each tube, and incubated at 37oC for 10 minutes.6.Cold acetone (1 ml) was added to each tube, and the supernatants were removed after centrifugation of the tubes at 12,000 x g for 3 minutes.7.Step 6 was repeated.8.Cold 70% EtOH solution (1 ml) was added, and the supernatants were removed after centrifugation of the tubes at 12,000 x g for 3 minutes.9.Lysis Buffer (20 μl) was added, and the cell pellet was dissolved by vortex and sonication.10.RA Solution (4 μl) was added to Protein-SHifter Plus and mixed by pipetting.11.The solution (2 μl) of Step 9 and Reaction Buffer B (4 μl) were added to the tube of Step 10, and the solution was mixed by pipetting.12.The tube of Step 11 was incubated at 37oC for 30 minutes.13.Loading Buffer ([10 (w/v) % sodium dodecyl sulfate, 50 (v/v) % glycerol, 0.2 mol/l Tris-HCl (pH 6.8) , 0.05 (w/v) % bromophenol blue], 2 μl) was added to the tube of Step 12 and mixed by pipetting.14.The solution of Step 13 was used for SDS-polyacrylamide gel (10-20%) electrophoresis.15.The gel was exposed with UV rays(302 nm) using a transilluminator for 10 minutes.16.The separated proteins in the gel were electrophoretically transferred onto a PVDF membrane.17.The GAPDH on the membrane was detected with anti-GAPDH antibody, HRP labeled secondary antibody, and luminol substrate.

Figure 2 Analysis of GAPDH S-Nitrosylation in HeLa cells

Dojindo,WST-8 formazan/10/W209,WST-8甲臜是水溶性染料

DescriptionS.D.S

Product DescriptionWST-8甲臜是水溶性染料,由WST-8四唑盐还原而成,在460 nm处具有最大吸光度。 

Dojindo细胞分析

细胞活力和细胞毒性测定用于药物筛选和化学物质的细胞毒性测试。Dojindo开发了高度水溶性的四唑盐,称为WST。WST-8是高度稳定的WST,用于Cell Counting Kit-8(CCK-8)。由于WST-8甲maz是水溶性的,因此不会形成晶体。因此,不需要诸如MTT测定的增溶过程。此外,CCK-8的检测灵敏度高于其他四唑盐,例如MTT,XTT,MTS或WST-1。

WST检测机制

 

ß-半乳糖苷酶检测试剂

细胞增殖/细胞毒性转染细胞染色细胞内荧光探针细菌染色微生物活力测定干细胞分化SPiDER-ßGal线粒体检测细胞代谢

应用 产品展示
细胞生长检测,药物筛选,比色/荧光检测 细胞计数试剂盒-8
细胞计数试剂盒8 + 96孔有机硅定向剂
细胞计数试剂盒-F
细胞毒性LDH检测试剂盒
-WST 96孔有机硅定向剂
MTT
了解检测机制的差异: 点击这里
细胞周期分析 细胞周期测定溶液深红色
细胞周期测定溶液蓝色

 

Dojindo,羧基-EG6-十一烷基硫醇/100/C445,聚乙二醇 (PEG) 广泛用于材料改性以提高表面的亲水性

聚乙二醇 (PEG) 广泛用于材料改性以提高表面的亲水性。 PEG 涂层材料通常在生理条件下更稳定。 由于 Carboxy-EG6-十一硫醇在末端有 6 个乙二醇单元、11 个碳原子和一个 SH 基团,因此它可用于在金表面上制备高度定向和亲水性的 SAM,适用于表面上的生物材料标记 改善的亲水性。 亲水表面可以防止蛋白质或其他生物材料发生非特异性结合。 因此,该试剂制备的SAM将为开发生物材料传感器或DNA/蛋白质微阵列提供更好的表面。 为了在金表面上制备羧基-EG6-SAM,使用羟基-EGn-十一硫醇(n=3, 6)根据引入到表面上的分子的密度来稀释羧基的数量。 有几篇关于标记蛋白质(如卵清蛋白和细胞色素 C)的论文。

1. C. Pale-Grosdemange, E. S. Simon, K. L. Prime, and G. M. Whitesides, Anal. Chem., 1999, 71, 777.2. A. Subramanian, J. Irudayaraj, and T. Ryan, Biosensors and Bioelectronics, 2006, 21, 998.3. X. Qian, S. J. Metallo, I. S. Choi, H. Wu, M. N. Liang and G. M. Whitesides, Anal. Chem., 2002, 74, 1805.4. M. Kyo, K.Usui-Aoki, H. Koga, Anal. Chem, 2005, 77, 7115.

Dojindo,7-Carboxy-1-heptanethiol/100/C386,羧基烷硫醇用于修饰金表面以在其上引入羧基

羧基烷硫醇用于修饰金表面以在其上引入羧基。羧基通常转化为活化的 N-羟基琥珀酰亚胺酯,它与生物材料的胺基反应。 Dojindo 新开发的 15-Carboxy-1-pentadecanethiol 具有 15 个碳链,是市场上羧基烷硫醇中最长的烷硫醇。包括 Carboxy-EG6-十一烷硫醇在内的五种不同的羧基烷硫醇可用于金表面改性。 Malone 和其他人使用 15-Carboxy-1-pentadecanethiol 制造了一种高度灵敏的 SPR 传感器。 Glenn 和他的同事使用羧基烷硫醇和聚-L-赖氨酸来制造固定的细胞色素 b5 多层电极。 Mizutani 和其他人以类似的方式制造了固定化葡萄糖氧化酶多层电极。两组都报告了从生物材料到金表面的电子转移。这些类型的多层膜电极非常适用于扩散电子转移的研究。 Frisbie 和其他人开发了一种新方法,化学力显微镜,用于获得图案样品表面的粘合剂相互作用和摩擦图像。他们使用原子力显微镜 (AFM) 来测量化学上不同官能团的相互作用和空间映射。 Frisbie 和其他人在 AFM 悬臂尖端的金表面上形成了羧基烷硫醇单分子层。他们使用原子力显微镜测量分子修饰的探针尖端和有机单层之间的粘附力和摩擦力,这些有机单层以光刻定义的不同官能团图案终止。

1. J. D. H. Glenn and E. F. Bowden, Diffusionless Electrochemistry of Cytochrome b5 Adsorbed on a Multilayer Film Electrode, Chem. Lett., 1996, 399.2. F. Mizutani, Y. Sato, S. Yabuki and Y. Hirata, Enzyme Ultra-thin Layer Electrode Prepared by the Co-adsorption of Poly-L-lysine and Glucose Oxidase onto a Mercaptopropionic Acid-Modified Gold Surface, Chem. Lett., 1996, 251.3. C. D. Frisbie, F. Rozsnyai, A. Noy, M. S. Wrighton and C. M. Lieber, Functional Group Imaging by Chemical Force Microscopy, Science, 1994, 265, 2071.

Dojindo,TOOS/1/OC13

Preparation of Assay Solution – TOOS

1. Dissolve 20 mg TOOS with 10 ml PBS to prepare 6.6 mM TOOS solution.2. Dissolve 14 mg 4-aminoantipyrin (AA) with 10 ml PBS to prepare 6.6 mM 4-AA solution.3. Prepare 2 U/ml horseradish peroxidase solution with PBS.4. Mix the same volume of each solution together to prepare assay solution. Store the assay solution at 4°C with protection from light.

Assay Protocol1. Prepare sample solutions for the enzymatic oxidation reaction. The pH range of the buffer solution should be from 5.5-9.5.2. Prepare standard solutions containing known amounts of substrate using the same buffer.3. Add the appropriate units of oxidase to the sample solution, followed by an addition of the same volume of the assay solution.4. Incubate the mixture at room temperature or at 37oC for 30 min to 1 hour.5. Measure the O.D. at 555 nm.6. Prepare a standard curve, and determine the substrate concentration in the sample solution.

1. K. Tamaoku, et al., New water-soluble Hydrogen Donors for the Enzymatic Photometric Determination of Hydrogen Peroxide. II. N-Ethyl-N-(2-hydroxy-3-sulfopropyl)aniline derivatives. Chem Pharm Bull. 1982;30:2492-2497.2. K. Tamaoku, et al., New water-soluble Hydrogen Donors for the Enzymatic Spectrophotometric Determination of Hydrogen Peroxide. Anal Chim Acta. 1982;136:121-127.3. B. C. Madsen, et al., Flow Injection and Photometric Determination of Hydrogen Peroxide in Rainwater with N-Ethyl-N-(sulfopropyl)aniline sodium salt. Anal Chem. 1984;56:2849-2850.

Dojindo,-SulfoBiotics- HSip-1 DA/50/SB22, -SulfoBiotics- HSip-1 是一种新型荧光探针

硫化氢 (H2S) 作为一种生理活性物质在血管舒张、细胞保护和调节胰岛素分泌方面具有重要作用,这一点已被公认。 H2S 被认为是一种气态分子,例如一氧化氮和一氧化碳。 然而,在生理条件下,约 80% 的总硫化物以硫化氢阴离子 (HS-) 的形式存在,因为 pKa 约为 7。此外,HS- 容易转化为各种生化分子,如过硫化物和多硫化物,与巯基反应 活体中的部分。 -SulfoBiotics- HSip-1 是一种新型荧光探针,可选择性检测 H2S,与 H2S 反应时会发出强烈的绿色荧光。 -SulfoBiotics-HSip-1 DA 具有细胞膜渗透性,可对细胞内 H2S 进行荧光成像。

Fig. 1 Chemical structure of HSip-1 DA

Fig. 2 Excitation and emission spectra of HSip-1 reacted with H2S(Em: 491nm/Ex: 516nm)

1. K. Sasakura, K. Hanaoka, N. Shibuya, Y. Mikami, Y. Kimura, T. Komatsu, T. Ueno, T. Terai, H. Kimura, and T. Nagano, “Development of a Highly Selective Fluorescence Probe for Hydrogen Sulfide”, J. Am. Chem. Soc., 2011, 133, 18003.

Fluorescence imaging of hydrogen sulfide with HSip-1 DA:1) 将 HeLa 细胞接种在 μ-slide 8 孔(Ibidi)上,在 5% CO2 培养箱中 37℃ 培养过夜。2)弃去培养基,用无血清培养基(MEM)洗涤细胞两次。3 ) HSip-1 DA 储备溶液 (1 mmol/l) 用无血清培养基 (MEM) 稀释以制备 5 μmol/l HSip-1 DA 工作溶液。 *请根据细胞系优化HSip-1 DA的终浓度。4)向细胞中加入HSip-1 DA工作液(5 μmol/l,200 μl),37℃培养30 5% CO2 培养箱中 5 分钟。5) 弃上清,用 HBSS 洗涤细胞两次。6) 每孔加入 Na2S 溶液(200 μmol/l,200 μl),细胞在 37℃ 5% CO2 培养箱中30 分钟。7) 弃上清,用HBSS 洗涤细胞两次。8) 加入HBSS (200 μl),共聚焦荧光显微镜观察细胞。

Dojindo,TB/1/T012,TB微溶于水不溶于丙酮乙酸乙酯和乙醚

TB微溶于水,不溶于丙酮、乙酸乙酯和乙醚。 其他有机溶剂如甲醇、乙醇和四氯甲烷可以很好地溶解结核病。 由于 TB 很容易用脱氢酶还原生成红紫色甲臜染料聚集体,因此可用于组织样本中的脱氢酶检测。

1. K. Tsou, et al., Synthesis of Some p-Nitrophenyl Substituted Tetrazolium Salts Electron Acceptors for the Demonstration of Dehydrogenases. J Am Chem Soc. 1956;78:6139-6144.2. S. S. Karmarkar, et al., Preparation of Nitrotetrazolium Salts Containing Benzothiazole. J Org Chem. 1960;25:575-578.3. J. E. Sinsheimer, et al., Reactivity of Blue Tetrazolium with Nonketol Compounds. Anal Chem. 1965;37:566-569.

Dojindo细胞分析

细胞活力和细胞毒性测定用于药物筛选和化学物质的细胞毒性测试。Dojindo开发了高度水溶性的四唑盐,称为WST。WST-8是高度稳定的WST,用于Cell Counting Kit-8(CCK-8)。由于WST-8甲maz是水溶性的,因此不会形成晶体。因此,不需要诸如MTT测定的增溶过程。此外,CCK-8的检测灵敏度高于其他四唑盐,例如MTT,XTT,MTS或WST-1。

WST检测机制

 

ß-半乳糖苷酶检测试剂

细胞增殖/细胞毒性转染细胞染色细胞内荧光探针细菌染色微生物活力测定干细胞分化SPiDER-ßGal线粒体检测细胞代谢

应用 产品展示
细胞生长检测,药物筛选,比色/荧光检测 细胞计数试剂盒-8
细胞计数试剂盒8 + 96孔有机硅定向剂
细胞计数试剂盒-F
细胞毒性LDH检测试剂盒
-WST 96孔有机硅定向剂
MTT
了解检测机制的差异: 点击这里
细胞周期分析 细胞周期测定溶液深红色
细胞周期测定溶液蓝色

 

Dojindo,二硫双歧(琥珀酰亚胺己酸酯)/10/D539

Product Description of Succinimidyl Alkanedisulfides
琥珀酰亚胺酯封端的烷基二硫化物是羧烷基二硫化物的胺反应性类似物。 它们用于修饰金表面以在表面上引入胺反应位点。 可以将这种技术用于蛋白质芯片和各种传感器。 无需使用偶联剂,因为这些化合物已被活化。 Wagner 和其他人通过扫描隧道显微镜 (STM)、放射性标记和原位 AFM 成像对金基板上的二硫代双(琥珀酰亚胺十一酸)SAM 进行了表征。 紧密堆积和高反应性的表面使它们能够轻松地固定氨基酸和蛋白质。

1. E. Delamarche, G. Sundarabaru, H. Biebuyck, B. Michel, Ch. Gerber, H. Sigrist, H. Wolf, H. Ringsdorf, N. Xanthopoulos and H. J. Mathieu, Immobilization of Antibodies on a Photoactive Self-Assembled Monolater on Gold, Langmuir, 1996, 12, 1997.2. P.Wager, F. Zaugg, P. Kernen, M. Hegner and G. Semenza, ρEfunctionalized self-assembled monolayers chemisorbed on ultraflat Au(111) surfaces for biological scanning probe microscopy in aqueous buffers, J. Vac. Sci. Technol. B, 1996, 14, 1466.

Dojindo,WST-3/100/W202

Product Description of WSTs

通过在四唑盐的苯环上引入正电荷或负电荷和羟基来开发水溶性四唑盐 (WST)。 正电荷,例如三烷基铵基团,提高了甲臜染料的水溶性。 然而,大的阳离子很容易与有机阴离子如羧酸根或磷酸根一起沉淀出来。 虽然羟基也提高了四唑盐的水溶性,但相应的甲臜染料的水溶性不足。 Dojindo 的 WST 在苯环上直接或间接添加磺酸基团,以提高水溶性。 Dojindo 还提供了几种新开发的苯偶氮型四唑盐,它们很容易用 NADH 或其他还原剂还原,得到橙色或紫色的甲臜染料。 由于苯偶氮基,颜色随重金属离子而变化。 由于 Dojindo 的 WST 的水溶性很高(WST-10 除外),因此可以制备 10 mM 至 100 mM 的溶液。

Dojindo,MAOS/1/OC11

1. K. Tamaoku, et al., New water-soluble Hydrogen Donors for the Enzymatic Photometric Determination of Hydrogen Peroxide. II. N-Ethyl-N-(2-hydroxy-3-sulfopropyl)aniline derivatives. Chem Pharm Bull. 1982;30:2492-2497.2. K. Tamaoku, et al., New water-soluble Hydrogen Donors for the Enzymatic Spectrophotometric Determination of Hydrogen Peroxide. Anal Chim Acta. 1982;136:121-127.3. B. C. Madsen, et al., Flow Injection and Photometric Determination of Hydrogen Peroxide in Rainwater with N-Ethyl-N-(sulfopropyl)aniline sodium salt. Anal Chem. 1984;56:2849-2850.

Dojindo,-硫生物-SSP4/SSP4/SB10

很明显,在生物体内存在大量含有硫烷硫的分子,例如过硫化物和多硫化物。 这些分子种类参与硫化氢的产生、储存和释放,硫化氢被认为是一种重要的生理介质。 此外,最近的研究表明,过硫化物和多硫化物可能通过蛋白质的 s- 硫化作用来控制细胞内信号转导。SSP4 (Sulfane Sulfur Probe 4) 是一种新型荧光探针,可以选择性地检测硫烷硫。 SSP4 本身不发荧光,但与硫烷反应时会发出强烈的绿色荧光。 因此,SSP4 能够实现硫烷硫的高灵敏度荧光检测和成像。

Fig. 1 Chemical Reaction with sulfane sulfer

Fig. 2 Fluorescence spectrum (Em: 482nm/Ex: 515nm)


Chemical species containing sulfane sulfurs:

Fig. 3 The formation of sulfane sulfer in vivo changes due to reduction/oxidation and translation

1. W. Chen, C. Liu, B. Peng, Y. Zhao, A. Pacheco, and M. Xian,“New fluorescent probe for sulfane sulfurs and the application in bioimaging“, Chem. Sci., 2013, 4, 2892.2. T. Ida, T. Sawa, H. Ihara. Y. Tsuchiya, Y. Watanabe, Y. Kumagai, M. Suematsu, H. Motohashi, S. Fujii, T, Matsunaga, M. Yamamoto, K. Ono, N. O. Devarie-Baez, M. Xian, J. M Fukuto, and T. Akaike, “Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling”, Proc Natl Acad Sci U S A., 2014, 111, 7606.3. E. Marutani, M. Sakaguchi, W. Chen, K. Sasakura, J. Liu, M. Xian, K. Hanaoka, T. Nagano, and F. Ichinose, “Cytoprotective effects of hydrogen sulfide-releasing N-methyl-D-aspartate receptor antagonists mediated by intracellular sulfane sulfur”, Med. Chem. Commun., 2014, 5, 1577.4. M. Sakaguchi, E. Marutani, H-S. Shin, W. Chen, K. Hanaoka, M. Xian, and F. Ichinose, “Sodium Thiosulfate Attenuates Acute Lung Injury in Mice”, Anesthesiology. 2014,121, 1248.

Cell Imaging:

Left: Control cellsRight: Treatment of 100 μmol/l Na2S3

Cell: CHO cellExposure time: 1,000 msc

Dojindo,16-Amino-1-hexadecanethiol, hydrochloride/100/A458

氨基烷硫醇用于修饰金表面以在表面上引入氨基。 Dojindo 新开发的 16-Amino-1-hexadecanethiol 具有 16 个碳链,是市场上最长的烷硫醇。由于烷烃基团之间的范德华力较大,预计在氨基烷硫醇化合物中,16-氨基-1-十六烷硫醇将在金表面上形成最稳定的SAM。五种不同的氨基烷硫醇,包括氨基-EG6-十一烷硫醇、盐酸盐,可用于金表面改性。氨基-EG6-十一硫醇用于亲水表面制备。氨基通常使用胺反应性材料(例如蛋白质或生物材料)进行修饰,以使金表面功能化。一些研究人员已经报道了短烷基链氨基烷硫醇的 SAM,并且关于长烷基链化合物的报道越来越多。 Takahara 等人在金电极上形成了单层 11-氨基-1-十一硫醇,并使用伏安法研究了末端基团对二茂铁衍生物氧化还原反应的影响。他们还报道了氨基烷硫醇的烷基链长度与连接到末端氨基的 2,3-二氯-1,4-萘醌的氧化还原行为之间的关系。 Tanahashi 和同事用几种功能化烷硫醇的 SAM 修饰了金表面。他们使用 X 射线光电子能谱 (XPS) 测量和石英晶体微天平 (QCM) 方法报告了其末端官能团对模拟体液中磷灰石形成的影响。

1. R. P. Solanki, K. S. Arya, Y. Nishimura, M. Iwamoto, B. D. Malhotra, Langmuir, 2007, 23, 7398-7403.2. J. M. Brockman, A. G. Fruto and R. M. Corn, J. Am. Chem. Soc., 1999, 121, 8044-8051.

Dojindo,WST-5/100/W204

Product Description of WSTs

通过在四唑盐的苯环上引入正电荷或负电荷和羟基来开发水溶性四唑盐 (WST)。 正电荷,例如三烷基铵基团,提高了甲臜染料的水溶性。 然而,大的阳离子很容易与有机阴离子如羧酸根或磷酸根一起沉淀出来。 虽然羟基也提高了四唑盐的水溶性,但相应的甲臜染料的水溶性不足。 Dojindo 的 WST 在苯环上直接或间接添加磺酸基团,以提高水溶性。 Dojindo 还提供了几种新开发的苯偶氮型四唑盐,它们很容易用 NADH 或其他还原剂还原,得到橙色或紫色的甲臜染料。 由于苯偶氮基,颜色随重金属离子而变化。 由于 Dojindo 的 WST 的水溶性很高(WST-10 除外),因此可以制备 10 mM 至 100 mM 的溶液。

WST-4, 5: M. Ishiyama, et al., Anal. Sci., 12, 515 (1996).

Dojindo,SAT-3/1/S302,SAT-3 是一种稳定的、高度水溶性的邻甲苯胺类似物

SAT-3 是一种稳定的、高度水溶性的邻甲苯胺类似物。 它很容易被过氧化物酶和过氧化氢氧化成pH 4-6的绿色染料。 TMBZ 需要有机溶剂或去污剂来溶解,而 SAT-3 只需缓冲溶液即可溶解。 SAT-3 溶液可在室温下避光储存。 染料的最大波长为 675 nm。 使用 Ames 测试,未检测到 SAT-3 的致突变性。 使用 Ames 测试。
1. 将 1 ml 100 mM SAT-3 溶液和 1 ml 30 mM 过氧化氢溶液与 8 ml 50 mM 柠檬酸盐缓冲液(pH 4)混合以制备分析溶液。 2. 向 96 孔板的每个孔中加入 100-200 μl 检测溶液,并在 37ºC 下孵育 5-30 分钟。 3. 阅读 O.D. 在 670 nm 或向每个孔中添加 50 μl 4 M 硫酸并读取 O.D. 相反,在 490 nm。

M. Mizoguchi, et al., Sensitive Chromogenic Substrate for Detecting Peroxidase Activity. Anal Commun. 1998;35:179.